OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1576–1593

Quantum metropolitan optical network based on wavelength division multiplexing

A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1576-1593 (2014)
http://dx.doi.org/10.1364/OE.22.001576


View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.

© 2014 Optical Society of America

OCIS Codes
(060.4265) Fiber optics and optical communications : Networks, wavelength routing
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: August 16, 2013
Revised Manuscript: November 22, 2013
Manuscript Accepted: December 4, 2013
Published: January 16, 2014

Citation
A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, "Quantum metropolitan optical network based on wavelength division multiplexing," Opt. Express 22, 1576-1593 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys74, 145–195 (2002). [CrossRef]
  2. ID Quantique SA, http://www.idquantique.com .
  3. Toshiba Research Europe Ltd., http://www.toshiba-europe.com/research/ .
  4. MagiQ Technologies Inc., http://www.magiqtech.com .
  5. SeQureNet, http://www.sequrenet.com .
  6. AIT, http://www.ait.ac.at/epr .
  7. Swiss Quantum, http://swissquantum.idquantique.com .
  8. A. Mirza and P. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B27, A185–A188 (2010). [CrossRef]
  9. P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express20, 14030–14041 (2012). [CrossRef] [PubMed]
  10. C. Elliot, “Building the quantum network,” New J. Phys.4, 46 (2002). [CrossRef]
  11. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys.11, 075001 (2009). [CrossRef]
  12. D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys.13, 123001 (2011). [CrossRef]
  13. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19, 10387–10409 (2011). [CrossRef] [PubMed]
  14. K. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: threats and security enhancement,” J. Lightwave Technol.29, 3210–3222 (2011). [CrossRef]
  15. Y. Chen, M. T. Fatehi, H. J. La Roche, J. Z. Larsen, and B. L. Nelson, “Metro optical networking,” Bell Labs Tech. J.4, 163–186 (1999). [CrossRef]
  16. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol.24, 4568–4583 (2006). [CrossRef]
  17. P. Townsend, S. Phoenix, K. Blow, and S. Barnett, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett.30, 1875–1877 (1994). [CrossRef]
  18. P. Townsend, “Quantum cryptography on multiuser optical fibre networks,” Nature385, 47–49 (1997). [CrossRef]
  19. P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett.10, 1048–1050 (1998). [CrossRef]
  20. D. Kumavor, C. Beal, S. Yelin, E. Donkor, and C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks,” J. Lightwave Technol.23, 268–276 (2005). [CrossRef]
  21. V. Fernandez, R. J. Collins, K. J. Gordon, P. D. Townsend, and G. S. Buller, “Passive optical network approach to gigahertz-clocked multiuser quantum key distribution,” IEEE J. Quantum Electron.43, 130–138 (2007). [CrossRef]
  22. W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron.15, 1591–1601 (2009). [CrossRef]
  23. D. Lancho, J. Martínez, D. Elkouss, M. Soto, and V. Martín, “QKD in standard optical telecommunications networks,” in 1st Int. Conf. on Quantum Communication and Quantum Networking (ICST, 2010), pp. 142–149. [CrossRef]
  24. I. Choi, R. J. Young, and P. D. Townsend, “Quantum key distribution on a 10Gb/s WDM-PON,” Opt. Express18, 9600–9612 (2010). [CrossRef] [PubMed]
  25. J. Capmany and C. Fernández-Pousa, “Analysis of passive optical networks for subcarrier multiplexed quantum key distribution,” IEEE Trans. Microwave Theory Tech.58, 3220–3228 (2010). [CrossRef]
  26. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys.13, 063039 (2011). [CrossRef]
  27. M. Razavi, “Multiple-access quantum key distribution networks,” IEEE Trans. Commun.60, 3071–3079 (2012). [CrossRef]
  28. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express16, 18790–18979 (2008). [CrossRef]
  29. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photon.1, 1749–4885 (2007).
  30. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys.11, 075003 (2009). [CrossRef]
  31. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett.37, 1008–1010 (2012). [CrossRef] [PubMed]
  32. N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express19, 10632–10639 (2011). [CrossRef] [PubMed]
  33. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon.7, 378–381 (2013). [CrossRef]
  34. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11, 045013 (2009). [CrossRef]
  35. Recommendation ITU-T G.694.2, Spectral grids for WDM applications: CWDM frequency grid (2003).
  36. Recommendation ITU-T G.694.1, Spectral grids for WDM applications: DWDM frequency grid (2012).
  37. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun.8, 948–964 (1990). [CrossRef]
  38. P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett.33, 188–190 (1997). [CrossRef]
  39. T. Xia, D. Chen, G. Wellbrock, A. Zavriyev, A. Beal, and K. Lee, “In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels,” in Optical Fiber Communication Conf. (IEEE, 2006), p. 3.
  40. H. Rohde, S. Smolorz, A. Poppe, and H. Huebel, “Quantum key distribution integrated into commercial WDM systems,” in Optical Fiber Communication Conf. (IEEE, 2008), pp. 1–3.
  41. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys.11, 105001 (2009). [CrossRef]
  42. B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through dense wavelength division multiplexing network,” New J. Phys.12, 18 (2010).
  43. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys.11, 045012 (2009). [CrossRef]
  44. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys.12, 063027 (2010). [CrossRef]
  45. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X2, 041010 (2012).
  46. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81, 1301–1350 (2009). [CrossRef]
  47. IEEE, IEEE standard for local and metropolitan area networks: overview and architecture (2002).
  48. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol.24, 2311–2317 (2006). [CrossRef]
  49. R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical Networks: A Practical Perspective, 3rd ed. (Morgan Kaufmann, 2009).
  50. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol.22, 2582–2591 (2004). [CrossRef]
  51. B. Korzh, N. Walenta, R. Houlmann, and H. Zbinden, “A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator,” Opt. Express21, 19579–19592 (2013). [CrossRef] [PubMed]
  52. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998). [CrossRef]
  53. L. Tian and H. Wang, “Optical wavelength conversion of quantum states with optomechanics,” Phys. Rev. A82, 053806 (2010). [CrossRef]
  54. C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A86, 023815 (2012). [CrossRef]
  55. P. Toliver, R. Runser, T. Chapuran, S. McNown, M. Goodman, J. Jackel, R. Hughes, C. Peterson, K. McCabe, J. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” in 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2004), pp. 491–492.
  56. R. Runser, T. Chapuran, P. Toliver, M. Goodman, and J. Jackel, “Demonstration of 1.3 μm quantum key distribution (QKD) compatibility with 1.5 μm metropolitan wavelength division multiplexed (WDM) systems,” in Optical Fiber Communication Conf. (IEEE, 2005), p. 3.
  57. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express17, 13326–13334 (2009). [CrossRef] [PubMed]
  58. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE7681, 76810Z (2010). [CrossRef]
  59. N. Walenta, “Concepts, components and implementations for quantum key distribution over optical fibers,” Ph.D. thesis, Faculté des Sciences de l’Université de Genève (2012).
  60. D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett.86, 011103 (2005). [CrossRef]
  61. Corning: SMF-28e+ LL optical fiber, http://www.corning.com/ .
  62. Flyin Optronics: splitter, circulators, CWDM filters and 1310/1550 WDM multiplexers, http://www.flyinoptronics.com/ .
  63. Polatis: optical switch Series 6000, http://www.polatis.com/datasheets/series-6000-192x192-low-loss-optical-switch.pdf .
  64. LG Nortel WPF 1132C (32-channels AWG).
  65. V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett.100, 200501 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited