OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1619–1628

Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique

Rui Liu, Daniel E. Milkie, Aaron Kerlin, Bryan MacLennan, and Na Ji  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1619-1628 (2014)
http://dx.doi.org/10.1364/OE.22.001619


View Full Text Article

Enhanced HTML    Acrobat PDF (3427 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

© 2014 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(220.1000) Optical design and fabrication : Aberration compensation
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: October 16, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: January 3, 2014
Published: January 16, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Rui Liu, Daniel E. Milkie, Aaron Kerlin, Bryan MacLennan, and Na Ji, "Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique," Opt. Express 22, 1619-1628 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes. (Oxford University, 1998)
  2. J. A. Kubby, Adaptive Optics for Biological Imaging. (CRC, 2013).
  3. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am.61, 656–658 (1971).
  4. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am.70(8), 998–1009 (1980). [CrossRef]
  5. D. M. Topa, “Wavefront reconstruction for the Shack-Hartmann wavefront sensor,” Proc. SPIE4769, 101–115 (2002). [CrossRef]
  6. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, and D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt.37(1), 140–155 (1998). [CrossRef] [PubMed]
  7. G. Chanan, M. Troy, and E. Sirko, “Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared,” Appl. Opt.38(4), 704–713 (1999). [CrossRef] [PubMed]
  8. G. Chanan, C. Ohara, and M. Troy, “Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm,” Appl. Opt.39(25), 4706–4714 (2000). [CrossRef] [PubMed]
  9. G. Chanan, M. Troy, and C. Ohara, “Phasing the primary mirror segments of the Keck telescopes: a comparison of different techniques,” Proc. SPIE4003, 188–202 (2000). [CrossRef]
  10. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  11. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanguinet, and W. P. Brown., “Coherent optical adaptive techniques,” Appl. Opt.13(2), 291–300 (1974). [CrossRef] [PubMed]
  12. T. R. O'Meara, “The multidither principle in adaptive optics,” J. Opt. Soc. Am.67(3), 306–314 (1977). [CrossRef]
  13. T. R. O'Meara, “Theory of multidither adaptive optical systems operating with zonal control of deformable mirrors,” J. Opt. Soc. Am.67(3), 318–325 (1977). [CrossRef]
  14. D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett.36(21), 4206–4208 (2011). [CrossRef] [PubMed]
  15. G. P. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000). [CrossRef] [PubMed]
  16. J. E. Pearson and S. Hansen, “Experimental studies of a deformable-mirror adaptive optical system,” J. Opt. Soc. Am.67(3), 325–332 (1977). [CrossRef]
  17. J. E. Pearson, “Atmospheric turbulence compensation using coherent optical adaptive techniques,” Appl. Opt.15(3), 622–631 (1976). [CrossRef] [PubMed]
  18. T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, D. Pilkington, J. Spring, D. J. Nelson, and C. A. Lu, “First experimental demonstration of self-synchronous phase locking of an optical array,” Opt. Express14(25), 12015–12021 (2006). [CrossRef] [PubMed]
  19. L. Liu, D. N. Loizos, M. A. Vorontsov, P. P. Sotiriadis, and G. Cauwenberghs, “Coherent combining of multiple beams with multi-dithering technique: 100 KHz closed-loop compensation demonstration,” Proc. SPIE6708, 67080D (2007). [CrossRef]
  20. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett.36(6), 870–872 (2011). [CrossRef] [PubMed]
  21. J. Porter, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications. (Wiley-Interscience, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited