OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1636–1644

Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators

Zhen-Yu Rong, Yu-Jing Han, Shu-Zhen Wang, and Cheng-Shan Guo  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1636-1644 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2809 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A flexible approach is presented to generate vector beams with arbitrary polarization and complex amplitude by means of two cascaded transmissive liquid crystal spatial light modulators (LCSLMs). The configuration of the cascaded LCSLM system and its modulation characteristic are introduced. Theoretical analysis and experimental demonstration prove that the system in combination with a double-pass computer-generated hologram and a black-and-white pattern can generate vector beams with arbitrary polarization and complex amplitude by respectively controlling the complex amplitudes of two orthogonal polarization components of the beams. Using this system, we successfully generate radially polarized vector beams with helical phase distributions and vector Bessel beams with inhomogeneous amplitude distributions in experiments.

© 2014 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.3720) Optical devices : Liquid-crystal devices
(260.5430) Physical optics : Polarization
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: November 1, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: January 3, 2014
Published: January 16, 2014

Zhen-Yu Rong, Yu-Jing Han, Shu-Zhen Wang, and Cheng-Shan Guo, "Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators," Opt. Express 22, 1636-1644 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009). [CrossRef]
  2. F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34(2), 256–266 (1995). [CrossRef] [PubMed]
  3. H. W. Ren, Y. H. Lin, S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89(5), 051114 (2006). [CrossRef]
  4. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010). [CrossRef] [PubMed]
  5. Z. Bomzon, V. Kleiner, E. Hasman, “Computer-generated space-variant polarization elements with subwavelength metal stripes,” Opt. Lett. 26(1), 33–35 (2001). [CrossRef] [PubMed]
  6. W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2011). [CrossRef]
  7. W. J. Cai, A. R. Libertun, R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14(9), 3785–3791 (2006). [CrossRef] [PubMed]
  8. Q. Hu, Z. H. Tan, X. Y. Weng, H. M. Guo, Y. Wang, S. L. Zhuang, “Design of cylindrical vector beams based on the rotating Glan polarizing prism,” Opt. Express 21(6), 7343–7353 (2013). [CrossRef] [PubMed]
  9. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  10. K. C. Toussaint, S. Park, J. E. Jureller, N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005). [CrossRef] [PubMed]
  11. V. G. Niziev, R. S. Chang, A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006). [CrossRef] [PubMed]
  12. C. Y. Han, R. S. Chang, H. F. Chen, “Solid-state interferometry of a pentaprism for generating cylindrical vector beam,” Opt. Rev. 20(2), 189–192 (2013). [CrossRef]
  13. O. Aharon, I. Abdulhalim, “Liquid crystal wavelength-independent continuous polarization rotator,” Opt. Eng. 49(3), 034002 (2010). [CrossRef]
  14. A. Safrani, I. Abdulhalim, “Liquid-crystal polarization rotator and a tunable polarizer,” Opt. Lett. 34(12), 1801–1803 (2009). [CrossRef] [PubMed]
  15. M. Bashkansky, D. Park, F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express 18(1), 212–217 (2010). [CrossRef] [PubMed]
  16. S. Tripathi, K. C. Toussaint., “Versatile generation of optical vector fields and vector beams using a non-interferometric approach,” Opt. Express 20(10), 10788–10795 (2012). [CrossRef] [PubMed]
  17. D. Maluenda, I. Juvells, R. Martínez-Herrero, A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express 21(5), 5432–5439 (2013). [CrossRef] [PubMed]
  18. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  19. H. Chen, J. J. Hao, B. F. Zhang, J. Xu, J. P. Ding, H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011). [CrossRef] [PubMed]
  20. S. Liu, P. Li, T. Peng, J. L. Zhao, “Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer,” Opt. Express 20(19), 21715–21721 (2012). [CrossRef] [PubMed]
  21. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007). [CrossRef]
  22. J. A. Davis, G. H. Evans, I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44(19), 4049–4052 (2005). [CrossRef] [PubMed]
  23. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express 20(1), 364–376 (2012). [CrossRef] [PubMed]
  24. J. H. Clegg, M. A. A. Neil, “Double pass, common path method for arbitrary polarization control using a ferroelectric liquid crystal spatial light modulator,” Opt. Lett. 38(7), 1043–1045 (2013). [CrossRef] [PubMed]
  25. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, 1999), Chap. 4.
  26. I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited