OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1645–1654

Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode

C. Abellán, W. Amaya, M. Jofre, M. Curty, A. Acín, J. Capmany, V. Pruneri, and M. W. Mitchell  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1645-1654 (2014)
http://dx.doi.org/10.1364/OE.22.001645


View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

© 2014 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(230.0230) Optical devices : Optical devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: November 6, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: December 31, 2013
Published: January 16, 2014

Citation
C. Abellán, W. Amaya, M. Jofre, M. Curty, A. Acín, J. Capmany, V. Pruneri, and M. W. Mitchell, "Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode," Opt. Express 22, 1645-1654 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, “Practical quantum cryptosystem for metro area applications,” IEEE J. Sel. Top. Quantum Electron.13, 1031–1038 (2007). [CrossRef]
  2. X. Cai and X. Wang, “Stochastic modeling and simulation of gene networks - a review of the state-of-the-art research on stochastic simulations,” IEEE Signal Process. Mag.24, 27–36 (2007). [CrossRef]
  3. C. Hall and B. Schneier, “Remote electronic gambling,” in “13th Annual Computer Security Applications Conference” (1997), pp. 232–238. [CrossRef]
  4. C. Petrie and J. Connelly, “A noise-based ic random number generator for applications in cryptography,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.47, 615–621 (2000). [CrossRef]
  5. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics4, 58–61 (2010). [CrossRef]
  6. A. Argyris, E. Pikasis, S. Deligiannidis, and D. Syvridis, “Sub-tb/s physical random bit generators based on direct detection of amplified spontaneous emission signals,” J. Lightwave Technol.30, 1329–1334 (2012). [CrossRef]
  7. Y. Yoshizawa, H. Kimura, H. Inoue, K. Fujita, M. Toyama, and O. Miyatake, “Physical random numbers generated by radioactivity,” J. Jpn. Soc. Comput. Stat.12, 67–81 (1999).
  8. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Intrum.71, 1675–1680 (2000). [CrossRef]
  9. O. Kwon, Y.-W. Cho, and Y.-H. Kim, “Quantum random number generator using photon-number path entanglement,” Appl. Opt.48, 1774–1778 (2009). [CrossRef] [PubMed]
  10. C. R. S. Williams, J. C. Salevan, X. Li, R. Roy, and T. E. Murphy, “Fast physical random number generator using amplified spontaneous emission,” Opt. Express18, 23584–23597 (2010). [CrossRef] [PubMed]
  11. H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E81, 051137 (2010). [CrossRef]
  12. M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri, “True random numbers from amplified quantum vacuum,” Opt. Express19, 20665–20672 (2011). [CrossRef] [PubMed]
  13. F. Xu, B. Qi, X. Ma, H. Xu, H. Zheng, and H.-K. Lo, “Ultrafast quantum random number generation based on quantum phase fluctuations,” Opt. Express20, 12366–12377 (2012). [CrossRef] [PubMed]
  14. M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Benson, “An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements,” Appl. Phys. Lett.98, 171105 (2011). [CrossRef]
  15. A. Marandi, N. C. Leindecker, K. L. Vodopyanov, and R. L. Byer, “All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators,” Opt. Express20, 19322–19330 (2012). [CrossRef] [PubMed]
  16. X.-Z. Li and S.-C. Chan, “Random bit generation using an optically injected semiconductor laser in chaos with oversampling,” Opt. Lett.37, 2163–2165 (2012). [CrossRef] [PubMed]
  17. A. Wang, P. Li, J. Zhang, J. Zhang, L. Li, and Y. Wang, “4.5 gbps high-speed real-time physical random bit generator,” Opt. Express21, 20452–20462 (2013). [CrossRef] [PubMed]
  18. S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature464, 1021–1024 (2010). [CrossRef] [PubMed]
  19. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18, 259–264 (1982). [CrossRef]
  20. C. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol.4, 298–311 (1986). [CrossRef]
  21. G. Agrawal, “Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron.26, 1901–1909 (1990). [CrossRef]
  22. N. Nisan and A. Ta-Shma, “Extracting randomness: A survey and new constructions,” J. Comput. Sci. Tech.58, 148–173 (1999).
  23. V. Rijmen and P. S. L. M. Barreto, “The WHIRLPOOL hash function,” http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (2008).
  24. A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST Special Publication 800-22 revision 1a (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited