OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1667–1672

Optical shock waves in silica aerogel

S. Gentilini, F. Ghajeri, N. Ghofraniha, A. Di Falco, and C. Conti  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1667-1672 (2014)
http://dx.doi.org/10.1364/OE.22.001667


View Full Text Article

Enhanced HTML    Acrobat PDF (1628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silica aerogels are materials well suited for high power nonlinear optical applications. In such regime, the non-trivial thermal properties may give rise to the generation of optical shock waves, which are also affected by the structural disorder due to the porous solid-state gel. Here we report on an experimental investigation in terms of beam waist and input power, and identify various regimes of the generation of wave-breaking phenomena in silica aerogels.

© 2014 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Materials

Citation
S. Gentilini, F. Ghajeri, N. Ghofraniha, A. Di Falco, and C. Conti, "Optical shock waves in silica aerogel," Opt. Express 22, 1667-1672 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. N. Likos, “Effective interactions in soft condensed matter physics,” Phys. Rep. 348, 267–439 (2001). [CrossRef]
  2. M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. Buth, B. Loppinet, G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter 8, 2382–2384 (2012). [CrossRef]
  3. I.C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  4. R.W. Boyd, Nonlinear Optics (Academic Press, 2002).
  5. C. Conti, N. Ghofraniha, G. Ruocco, S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett. 97,123903 (2006). [CrossRef] [PubMed]
  6. W.M. Lee, R. El-Ganainy, D.N. Christodoulides, K. Dholakia, E.M. Wright, “Nonlinear optical response of colloidal suspensions,” Opt. Exp. 17, 10277–10289 (2009). [CrossRef]
  7. E. DelRe, E. Spinozzi, R. Agranat, C. Conti, “Scale free optics and diffractionless waves in nano-disordered ferroelectrics,” Nature Photonics 5, 39–42 (2011). [CrossRef]
  8. N. Ghofraniha, C. Conti, G. Ruocco, “Aging of the nonlinear optical susceptibility in doped colloidal suspensions,” Phys. Rev. B 75,038303 (2007). [CrossRef]
  9. N. Ghofraniha, C. Conti, G. Ruocco, F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102,038303 (2009). [CrossRef] [PubMed]
  10. A. Ashkin, J.M. Dziedzic, P.W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett. 7, 276–278 (1982). [CrossRef] [PubMed]
  11. S. Gentilini, N. Gofraniha, E. DelRe, C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A 87,053811 (2013). [CrossRef]
  12. C. Conti, E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett. 105,118301 (2010). [CrossRef] [PubMed]
  13. M.A. Aegerter, N. Leventis, M.M. Koebel, Advances in Sol-gel Derived Materials and Technologies (Springer, 2011).
  14. J.T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S.Y. Kim, K. Yoo, A. Mott, M. Namkung, S.S. Yung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82, 4444–4446 (2003). [CrossRef]
  15. J. T. Seo, S. M. Mao, Q. Yang, L. Creekmore, H. Brown, R. Battle, K. Lee, A. Jackson, T. Skyles, B. Tabibi, K. P. Yoo, S. Y. Kim, S. S. Jung, M. Namkung, “Large optical nonlinearity of highly porous silica nanoaerogels in the nanosecond time domain,” J. Korean Phys. Soc. 48, 1395–1399 (2006).
  16. N. Ghofraniha, L. Amato Santamaria, V. Folli, S. Trillo, E. DelRe, C. Conti, “Measurement of scaling laws for shock waves in thermal nonlocal media,” Opt. Lett. 37, 2325–2327 (2012). [CrossRef] [PubMed]
  17. N. Ghofraniha, S. Gentilini, V. Folli, E. DelRe, C. Conti, “Measurement of scaling laws for shock waves in thermal nonlocal media,” Phys.Rev.Lett. 109,243902 (2012).
  18. S. Gentilini, N. Ghofraniha, E. DelRe, C. Conti, “Shock wave far-field in ordered and disordered nonlocal media,” Opt.Expr. 20, 27369–27375 (2012).
  19. J.C. Bronsky, D. McLaughlin, Singular Limits of Dispersive Waves (Plenum, 1994).
  20. M.A. Hoefer, M.J. Ablowitz, I. Coddington, E.A. Cornell, P. Engels, V. Schweikhard, “Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics,” Phys. Rev. A 74,023623 (2006). [CrossRef]
  21. W. Wan, S. Jia, J.W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nature Physics 3, 46–51 (2007). [CrossRef]
  22. C. Barsi, W. Wan, C. Sun, J.W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32, 2930–2932 (2007). [CrossRef] [PubMed]
  23. N. Ghofraniha, C. Conti, R. Ruocco, S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99,043903 (2007). [CrossRef] [PubMed]
  24. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, “Observation of a gradient catastrophe generating solitons,” Phys. Rev. Lett. 102,083902 (2009). [CrossRef] [PubMed]
  25. A. Armaroli, S. Trillo, A. Fratalocchi, “Suppression of transverse instabilities of dark solitons and their dispersive shock waves,” Phys. Rev. A 80,053803 (2009). [CrossRef]
  26. W. Wan, V. Dylov, C. Barsi, J.W. Fleischer, “Diffraction from an edge in a self-focusing medium,” Opt. Lett. 35, 2819–2821 (2010). [CrossRef] [PubMed]
  27. A. Venkateswara Rao, P.B. Wagh, “Preparation and characterization of hydrophobic silica aerogels,” Mat. Chem. and Phys. 53, 13–18 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited