OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1768–1783

40 Gb/s optical subassembly module for a multi-channel bidirectional optical link

Jamshid Sangirov, Gwan-Chong Joo, Jae-Shik Choi, Do-Hoon Kim, Byueng-Su Yoo, Ikechi Augustine Ukaegbu, Nguyen T. H. Nga, Jong-Hun Kim, Tae-Woo Lee, Mu Hee Cho, and Hyo-Hoon Park  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1768-1783 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 40 Gb/s bidirectional optical link using four-channel optical subassembly (OSA) modules and two different wavelengths for the up- and down-link is demonstrated. Widely separated wavelengths of 850 nm and 1060 nm are used to reduce the optical crosstalk between the up- and down-link signals. Due to the integration capabilities of silicon, the OSA is implemented, all based on silicon: V-grooved silicon substrates to embed fibers and silicon optical benches (SiOBs) to mount optical components. The SiOBs are separately prepared for array chips of photodiodes (PDs), vertical-cavity surface-emitting lasers (VCSELs), and monitoring PDs, which are serially configured on an optical fiber array for direct coupling to the transmission fibers. The separation of the up- and down-link wavelengths is implemented using a wavelength-filtering 45° mirror which is formed in the fiber under the VCSEL. To guide the light signal to the PD another 45° mirror is formed at the end of the fiber. The fabricated bidirectional OSA module shows good performances with a clear eye-diagram and a BER of less than 10−12 at a data rate of 10 Gb/s for each of the channels with input powers of −8 dBm and −6.5 dBm for the up-link and the down-link, respectively. The measured inter-channel crosstalk of the bidirectional 40 Gb/s optical link is about −22.6 dB, while the full-duplex operation mode demonstrates negligible crosstalk between the up- and down-link.

© 2014 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(200.4650) Optics in computing : Optical interconnects
(230.0230) Optical devices : Optical devices
(080.4035) Geometric optics : Mirror system design
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optical Communications

Original Manuscript: November 8, 2013
Revised Manuscript: December 21, 2013
Manuscript Accepted: January 2, 2014
Published: January 17, 2014

Jamshid Sangirov, Gwan-Chong Joo, Jae-Shik Choi, Do-Hoon Kim, Byueng-Su Yoo, Ikechi Augustine Ukaegbu, Nguyen T. H. Nga, Jong-Hun Kim, Tae-Woo Lee, Mu Hee Cho, and Hyo-Hoon Park, "40 Gb/s optical subassembly module for a multi-channel bidirectional optical link," Opt. Express 22, 1768-1783 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Schow, F. E. Doany, A. V. Rylyakov, B. G. Lee, C. V. Jahnes, Y. H. Kwark, C. W. Baks, D. M. Kuchta, J. A. Kash, “A 24-channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single “holey” CMOS IC,” J. Lightwave Technol. 29(4), 542–553 (2011). [CrossRef]
  2. J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010). [CrossRef]
  3. J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012). [CrossRef]
  4. J. D. Ingham, R. V. Penty, I. H. White, “Bidirectional multimode-fiber communication links using dual-purpose vertical-cavity devices,” J. Lightwave Technol. 24(3), 1283–1294 (2006). [CrossRef]
  5. N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).
  6. G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000). [CrossRef]
  7. Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013). [CrossRef]
  8. B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003). [CrossRef]
  9. Y. Nekado, M. Iwase, “1.3-μm range vertical-cavity surface-emitting laser (VCSEL) module,” Furukawa Review 27, 72–78 (2005).
  10. K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007). [CrossRef]
  11. D. Paladino, A. Iadicicco, S. Campopiano, A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009). [CrossRef] [PubMed]
  12. J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).
  13. A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).
  14. M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011). [CrossRef]
  15. L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).
  16. MaxCap-OM3 - 10 Gb/s multimode optical fiber, high-speed laser-launch multimode fiber (OM3), http://communications.draka.com/sites/usa/Pages/MultiModeFibers_MaxCap.aspx (2013).
  17. A. Aguayo, “Advances in high frequency printed circuit board materials,” Microwave Eng. Europe, December 2009, 11-14 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited