OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1806–1814

Fabrication and characterization of deep ridge InGaAsP/InP light emitting transistors

Wenjuan Huo, Song Liang, Can Zhang, Shaoyang Tan, Liangshun Han, Hongyun Xie, Hongliang Zhu, and Wei Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1806-1814 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Deep Ridge InGaAsP/InP Light Emitting Transistors (LET) with ~1.5μm light emissions have been fabricated and characterized. In the deep ridge LETs, all the light emissions are from the intrinsic base area, which makes them more suitable for high speed direct modulation. A collector emitter voltage (VCE) dependent output power, which has been predicted numerically, is observed experimentally for the first time and may facilitate the use of LETs in optoelectronic integrations. A novel trend of self-heating related saturation of light power with base current is also observed, which is explained by the three port operation of the device. Further, an abnormal common-emitter current-voltage (I-V) characteristic of the deep ridge LETs is shown and is attributed to the non-radiative recombination centers at the ridge side walls. With the good quality of the quantum wells, laser operation at near room temperature is achieved in the deep ridge LET with 800μm cavity length. With proper surface passivation techniques and device optimizations, performance of the deep ridge transistor based optoelectronic devices can be further enhanced greatly and ultra low power consumption which is highly desirable can be expected.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.0230) Optical devices : Optical devices

ToC Category:

Original Manuscript: July 15, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: January 10, 2014
Published: January 21, 2014

Wenjuan Huo, Song Liang, Can Zhang, Shaoyang Tan, Liangshun Han, Hongyun Xie, Hongliang Zhu, and Wei Wang, "Fabrication and characterization of deep ridge InGaAsP/InP light emitting transistors," Opt. Express 22, 1806-1814 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005). [CrossRef]
  2. M. Feng, N. Holonyak, R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84(11), 1952–1954 (2004). [CrossRef]
  3. R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005). [CrossRef]
  4. M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009). [CrossRef]
  5. S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011). [CrossRef]
  6. C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009). [CrossRef]
  7. G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009). [CrossRef]
  8. Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011). [CrossRef]
  9. M. Shirao, T. Sato, N. Sato, N. Nishiyama, S. Arai, “Room-temperature operation of npn- AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-µm wavelength,” Opt. Express 20(4), 3983–3989 (2012). [CrossRef] [PubMed]
  10. N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013). [CrossRef]
  11. Z. G. Duan, W. Shi, L. Chrostowski, X. D. Huang, N. Zhou, G. G. Chai, “Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser,” Opt. Express 18(2), 1501–1509 (2010). [CrossRef] [PubMed]
  12. S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011). [CrossRef] [PubMed]
  13. S. H. Lee, D. Parekh, T. Shindo, W. Yang, P. Guo, D. Takahashi, N. Nishiyama, C. J. Chang-Hasnain, S. Arai, “Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions,” Opt. Express 18(16), 16370–16378 (2010). [CrossRef] [PubMed]
  14. W. Shi, L. Chrostowski, B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 20(24), 2141–2143 (2008). [CrossRef]
  15. R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008). [CrossRef]
  16. R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998). [CrossRef]
  17. G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996). [CrossRef]
  18. H. Shimizu, Y. Nakano, “Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5-μm wavelength range,” IEEE Photonics Technol. Lett. 19(24), 1973–1975 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited