OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1842–1851

Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold

Jie Zhang, Su Shen, Xiao X Dong, and Lin S Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1842-1851 (2014)
http://dx.doi.org/10.1364/OE.22.001842


View Full Text Article

Enhanced HTML    Acrobat PDF (3241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A soft lithographic approach using a modified polyurethane acrylate (PUA) mold for the fabrication of sub-wavelength antireflective structure on polymer film is reported. By introducing an intermediate transferring PUA mold generated by an anodized aluminum oxide membrane, there is no need either to heat nor to deposit metal as a seed layer. Therefore, the most costly and time-consuming master preparation step in the conventional process chain is not a necessity. The soft PUA mold provides a high resolution of 100 nm with an aspect ratio of 1.7 and a conformal contact with the substrate and reduces the pressure needed during the imprinting steps. It is numerically verified that the antireflective film with nanopores has a similar fascinating broadband antireflective effect compared with that of its complementary nanonipple one. In our experiment, the average transmission efficiency of the PET film with dual-side nanopores can be enhanced to 98.7% at normal incidence and 92.5% at an incident angle of 60° over a range of 400~800 nm of the spectrum. The proposed method is simple and cost-effective and the fabricated antireflective polymer film can be mounted on the surfaces of various optical devices for the reduction of Fresnel reflections.

© 2014 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 13, 2013
Revised Manuscript: December 31, 2013
Manuscript Accepted: January 2, 2014
Published: January 21, 2014

Citation
Jie Zhang, Su Shen, Xiao X Dong, and Lin S Chen, "Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold," Opt. Express 22, 1842-1851 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. G. Bernhard, W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3), 385–386 (1962). [CrossRef] [PubMed]
  2. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef] [PubMed]
  3. S. A. Boden, D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008). [CrossRef]
  4. B. Päivänranta, T. Saastamoinen, M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009). [CrossRef] [PubMed]
  5. J. Zhu, C. M. Hsu, Z. Yu, S. H. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  6. C. H. Sun, B. J. Ho, B. Jiang, P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33(19), 2224–2226 (2008). [CrossRef] [PubMed]
  7. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. Bakkers, W. L. Vos, J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009). [CrossRef]
  8. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008). [CrossRef] [PubMed]
  9. Y. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, Z. H. Wang, Z. Q. Sun, J. R. Guo, B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009). [CrossRef]
  10. Y. M. Song, H. J. Choi, J. S. Yu, Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010). [CrossRef] [PubMed]
  11. J. W. Leem, Y. Yeh, J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20(4), 4056–4066 (2012). [CrossRef] [PubMed]
  12. H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci. 6(6), 1929–1937 (2013). [CrossRef]
  13. A. Kaless, U. Schulz, P. Munzert, N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1), 58–61 (2005). [CrossRef]
  14. Y. Kanamori, E. Roy, Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78, 287–293 (2005). [CrossRef]
  15. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15(20), 13108–13113 (2007). [CrossRef] [PubMed]
  16. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22(33), 3713–3718 (2010). [CrossRef] [PubMed]
  17. D. S. Kim, D. H. Kim, J. H. Jang, “A nanoscale conical polymethyl methacrylate (PMMA) sub-wavelength structure with a high aspect ratio realized by a stamping method,” Opt. Express 21(7), 8450–8459 (2013). [CrossRef] [PubMed]
  18. C. H. Sun, W. L. Min, N. C. Linn, P. Jiang, B. Jiang, “Large-scale assembly of periodic nanostructures with metastable square lattices,” J. Vac. Sci. Technol. B 27(3), 1043–1047 (2009). [CrossRef]
  19. G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, S. Mu, “The fabrication of subwavelength anti-reflective nanostructures using a bio-template,” Nanotechnology 19(9), 095605 (2008). [CrossRef] [PubMed]
  20. D. H. Ko, J. R. Tumbleston, K. J. Henderson, L. E. Euliss, J. M. DeSimone, R. Lopez, E. T. Samulski, “Biomimetic microlens array with antireflective “moth-eye”surface,” Soft Matter 7(14), 6404–6407 (2011). [CrossRef]
  21. V. Auzelyte, V. Flauraud, V. J. Cadarso, T. Kiefer, J. Brugger, “Biomimetic soft lithography on curved nanostructured surfaces,” Microelectron. Eng. 97, 269–271 (2012). [CrossRef]
  22. S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  23. Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprinting lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003). [CrossRef]
  24. C. J. Ting, F. Y. Chang, C. F. Chen, C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavlength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008). [CrossRef]
  25. S. H. Hong, J. Y. Hwang, H. Lee, H. C. Lee, K. W. Choi, “UV nanoimprint using flexible polymer template and substrate,” Microelectron. Eng. 86(3), 295–298 (2009). [CrossRef]
  26. G. Hubbard, M. E. Nasir, P. Shields, C. R. Bowen, A. Satka, K. P. Parsons, N. H. Holmes, D. W. E. Allsopp, “Angle dependent optical properties of polymer films with a biomimetic anti-reflecting surface replicated from cylindrical and tapered nanoporous alumina,” Nanotechnology 23(15), 155302 (2012). [CrossRef] [PubMed]
  27. T. Yanagishita, K. Nishio, H. Masuda, “Antireflection polymer hole array structures by imprinting using metal molds from anodic porous alumina,” Appl. Phys. Express 1(7), 067004 (2008). [CrossRef]
  28. M. Burghoorn, D. R. Melsen, J. de Riet, S. Sabik, Z. Vroon, I. Yakimets, P. Buskens, “Single layer broadband anti-reflective coatings for plastic substrates produced by full wafer and roll-to-roll step-and-flash nanoimprint lithography,” Materials 6(9), 3710–3726 (2013). [CrossRef]
  29. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007). [CrossRef]
  30. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384 (2006). [CrossRef]
  31. R. Zhang, K. Jiang, Y. Zhu, H. Qi, G. Ding, “Ultrasound-assisted anodization of aluminum in oxalic acid,” Appl. Surf. Sci. 258(1), 586–589 (2011). [CrossRef]
  32. C. Ran, G. Ding, W. Liu, Y. Deng, W. Hou, “Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure,” Langmuir 24(18), 9952–9955 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited