OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1852–1864

Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments

Xiewei Zhong, Xiang Wen, and Dan Zhu  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1852-1864 (2014)
http://dx.doi.org/10.1364/OE.22.001852


View Full Text Article

Enhanced HTML    Acrobat PDF (2484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fiber reflectance spectroscopy is a non-invasive method for diagnosing skin diseases or evaluating aesthetic efficacy, but it is dependent on the inverse model validity. In this work, a lookup-table-based inverse model is developed using two-layered Monte Carlo simulations in order to extract the physiological and optical properties of skin. The melanin volume fraction and blood oxygen parameters are extracted from fiber reflectance spectra of in vivo human skin. The former indicates good coincidence with a commercial skin-melanin probe, and the latter (based on forearm venous occlusion and ischemia, and hot compress experiment) shows that the measurements are in agreement with physiological changes. These results verify the potential of this spectroscopy technique for evaluating the physiological characteristics of human skin.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 8, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 13, 2014
Published: January 21, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Xiewei Zhong, Xiang Wen, and Dan Zhu, "Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments," Opt. Express 22, 1852-1864 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008). [CrossRef] [PubMed]
  2. J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007). [CrossRef] [PubMed]
  3. G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011). [CrossRef] [PubMed]
  4. R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992). [CrossRef] [PubMed]
  5. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005). [CrossRef] [PubMed]
  6. Th. Forster, U. Issberner, H. Hensen, “Lipid/surfactant compounds as a new tool to optimize skin-care properties of personal-cleansing products,” J. Surfactants Deterg. 3(3), 345–352 (2000). [CrossRef]
  7. L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006). [CrossRef] [PubMed]
  8. Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000). [CrossRef] [PubMed]
  9. R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981). [CrossRef] [PubMed]
  10. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989). [CrossRef] [PubMed]
  11. A. N. Bashkatov, E. A. Genina, V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011). [CrossRef]
  12. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,” Appl. Opt. 38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  13. G. Zonios, A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14(19), 8661–8674 (2006). [CrossRef] [PubMed]
  14. G. Zonios, A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267 (2009). [CrossRef] [PubMed]
  15. N. Rajaram, T. H. Nguyen, J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008). [CrossRef] [PubMed]
  16. N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010). [CrossRef] [PubMed]
  17. S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011). [CrossRef] [PubMed]
  18. G. M. Palmer, N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  19. M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express 15(12), 7863–7875 (2007). [CrossRef] [PubMed]
  20. G. Zonios, J. Bykowski, N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001). [CrossRef] [PubMed]
  21. J. C. Finlay, T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004). [CrossRef] [PubMed]
  22. G. Zonios, A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2(12), 3284–3294 (2011). [CrossRef] [PubMed]
  23. L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011). [CrossRef] [PubMed]
  24. Z. Qian, S. S. Victor, Y. Gu, C. A. Giller, H. Liu, “Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study,” Opt. Express 11(16), 1844–1855 (2003). [CrossRef] [PubMed]
  25. D. Zhu, W. Lu, S. Zeng, Q. Luo, “Effect of light losses of sample between two integrating spheres on optical properties estimation,” J. Biomed. Opt. 12(6), 064004 (2007). [CrossRef] [PubMed]
  26. G. Mantis, G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48(18), 3490–3496 (2009). [CrossRef] [PubMed]
  27. G. Zonios, A. Dimou, “Simple two-layer reflectance model for biological tissue applications: lower absorbing layer,” Appl. Opt. 49(27), 5026–5031 (2010). [CrossRef] [PubMed]
  28. D. Yudovsky, L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010). [CrossRef] [PubMed]
  29. I. Fredriksson, M. Larsson, T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012). [CrossRef] [PubMed]
  30. C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012). [CrossRef]
  31. C. Zhu, Q. Liu, “Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study,” Opt. Express 19(18), 17799–17812 (2011). [CrossRef] [PubMed]
  32. B. Luo, S. He, “An improved Monte Carlo diffusion hybrid model for light reflectance by turbid media,” Opt. Express 15(10), 5905–5918 (2007). [CrossRef] [PubMed]
  33. L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995). [CrossRef]
  34. L. Wang, S. L. Jacques, L. Zheng, “CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54(3), 141–150 (1997). [CrossRef]
  35. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006). [CrossRef] [PubMed]
  36. S. L. Jacques, “Skin Optics,” (1998), http://omlc.ogi.edu/news/jan98/skinoptics.html .
  37. S. A. Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  38. R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011). [CrossRef] [PubMed]
  39. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006). [CrossRef] [PubMed]
  40. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  41. F. Martelli, G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15(2), 486–500 (2007). [CrossRef] [PubMed]
  42. S. L. Jacques, “Spectral Imaging and Analysis to Yield Tissue Optical Properties,” J. Innov. Opt. Health Sci. 2(02), 123–129 (2009). [CrossRef]
  43. P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000). [CrossRef] [PubMed]
  44. J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011). [CrossRef] [PubMed]
  45. Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010). [CrossRef] [PubMed]
  46. T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010). [CrossRef]
  47. Courage & Khazaka, “Information and operating instructions for the Cutometer MPA 580 and its probe,” Koln, Germany: CK electronic GmbH (2005).
  48. R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited