OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1871–1883

Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere

Rong Chen, Lin Liu, Shijun Zhu, Gaofeng Wu, Fei Wang, and Yangjian Cai  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1871-1883 (2014)
http://dx.doi.org/10.1364/OE.22.001871


View Full Text Article

Enhanced HTML    Acrobat PDF (2396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laguerre-Gaussian Schell-model (LGSM) beam was proposed in theory [Opt. Lett. 38, 91 (2013 Opt. Lett. 38, 1814 (2013)] just recently. In this paper, we study the propagation of a LGSM beam in turbulent atmosphere. Analytical expressions for the cross-spectral density and the second-order moments of the Wigner distribution function of a LGSM beam in turbulent atmosphere are derived. The statistical properties, such as the degree of coherence and the propagation factor, of a LGSM beam in turbulent atmosphere are studied in detail. It is found that a LGSM beam with larger mode order n is less affected by turbulence than a LGSM beam with smaller mode order n or a GSM beam under certain condition, which will be useful in free-space optical communications.

© 2014 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(030.0030) Coherence and statistical optics : Coherence and statistical optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 25, 2013
Revised Manuscript: January 11, 2014
Manuscript Accepted: January 13, 2014
Published: January 21, 2014

Citation
Rong Chen, Lin Liu, Shijun Zhu, Gaofeng Wu, Fei Wang, and Yangjian Cai, "Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere," Opt. Express 22, 1871-1883 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  2. Y. Cai, S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005). [CrossRef] [PubMed]
  3. F. Wang, Y. Cai, S. He, “Experimental observation of coincidence fractional Fourier transform with a partially coherent beam,” Opt. Express 14(16), 6999–7004 (2006). [CrossRef] [PubMed]
  4. D. Kermisch, “Partially coherent image processing by laser scanning,” J. Opt. Soc. Am. 65(8), 887–891 (1975). [CrossRef]
  5. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984). [CrossRef]
  6. A. Belendez, L. Carretero, A. Fimia, “The use of partially coherent light to reduce the efficiency of silve-halide noise gratings,” Opt. Commun. 98(4-6), 236–240 (1993). [CrossRef]
  7. J. C. Ricklin, F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002). [CrossRef] [PubMed]
  8. T. van Dijk, D. G. Fischer, T. D. Visser, E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010). [CrossRef] [PubMed]
  9. Y. Dong, F. Wang, C. Zhao, Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012). [CrossRef]
  10. C. Zhao, Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam,” Opt. Lett. 36(12), 2251–2253 (2011). [CrossRef] [PubMed]
  11. G. Wu, Y. Cai, “Detection of a semirough target in turbulent atmosphere by a partially coherent beam,” Opt. Lett. 36(10), 1939–1941 (2011). [CrossRef] [PubMed]
  12. Y. Cai, U. Peschel, “Second-harmonic generation by an astigmatic partially coherent beam,” Opt. Express 15(23), 15480–15492 (2007). [CrossRef] [PubMed]
  13. F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007). [CrossRef] [PubMed]
  14. F. Gori, V. R. Sanchez, M. Santarsiero, T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt. 11(8), 085706 (2009). [CrossRef]
  15. H. Lajunen, T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011). [CrossRef] [PubMed]
  16. Z. Tong, O. Korotkova, “Non-uniformly correlated beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012). [CrossRef] [PubMed]
  17. Z. Tong, O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29(10), 2154–2158 (2012). [CrossRef] [PubMed]
  18. Y. Gu, G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013). [CrossRef] [PubMed]
  19. S. Sahin, O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012). [CrossRef] [PubMed]
  20. O. Korotkova, S. Sahin, E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012). [CrossRef]
  21. S. Du, Y. Yuan, C. Liang, Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013). [CrossRef]
  22. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013). [CrossRef]
  23. Z. Mei, O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38(14), 2578–2580 (2013). [CrossRef] [PubMed]
  24. Z. Mei, E. Schchepakina, O. Korotkova, “Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence,” Opt. Express 21(15), 17512–17519 (2013). [CrossRef] [PubMed]
  25. C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. Doc. ID 202151 (2014).
  26. Z. Mei, O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013). [CrossRef] [PubMed]
  27. F. Wang, X. Liu, Y. Yuan, Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013). [CrossRef] [PubMed]
  28. J. Cang, P. Xiu, X. Liu, “Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical system in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013). [CrossRef]
  29. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89(1), 013801 (2014). [CrossRef]
  30. E. Wolf, Introduction to the theory of coherence and polarization of light (Cambridge Univeristy, 2007).
  31. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Washington, 2001).
  32. H. T. Eyyuboğlu, Y. Baykal, “Analysis of reciprocity of cos-Gaussian and cosh- Gaussian laser beams in a turbulent atmosphere,” Opt. Express 12(20), 4659–4674 (2004). [CrossRef] [PubMed]
  33. T. Shirai, A. Dogariu, E. Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 20(6), 1094–1102 (2003). [CrossRef] [PubMed]
  34. Y. Cai, S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006). [CrossRef] [PubMed]
  35. Y. Baykal, H. T. Eyyuboğlu, “Scintillation index of flat-topped Gaussian beams,” Appl. Opt. 45(16), 3793–3797 (2006). [CrossRef] [PubMed]
  36. Y. Cai, S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117 (2006). [CrossRef]
  37. Y. Cai, Y. Chen, H. T. Eyyuboğlu, Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007). [CrossRef] [PubMed]
  38. R. J. Noriega-Manez, J. C. Gutiérrez-Vega, “Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere,” Opt. Express 15(25), 16328–16341 (2007). [CrossRef] [PubMed]
  39. Y. Dan, B. Zhang, “Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere,” Opt. Express 16(20), 15563–15575 (2008). [CrossRef] [PubMed]
  40. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, Y. Baykal, O. Korotkova, “M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere,” Opt. Express 17(20), 17344–17356 (2009). [CrossRef] [PubMed]
  41. Y. Cai, O. Korotkova, H. T. Eyyuboğlu, Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16(20), 15834–15846 (2008). [CrossRef] [PubMed]
  42. O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008). [CrossRef]
  43. Y. Cai, Q. Lin, H. T. Eyyuboğlu, Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008). [CrossRef] [PubMed]
  44. W. Cheng, J. W. Haus, Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009). [CrossRef] [PubMed]
  45. Y. Gu, G. Gbur, “Scintillation of airy beam arrays in atmospheric turbulence,” Opt. Lett. 35(20), 3456–3458 (2010). [CrossRef] [PubMed]
  46. P. Zhou, Y. Ma, X. Wang, H. Zhao, Z. Liu, “Average spreading of a Gaussian beam array in non-Kolmogorov turbulence,” Opt. Lett. 35(7), 1043–1045 (2010). [CrossRef] [PubMed]
  47. F. Wang, Y. Cai, “Second-order statistics of a twisted gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 18(24), 24661–24672 (2010). [CrossRef] [PubMed]
  48. F. Wang, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, “Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere,” Opt. Lett. 37(2), 184–186 (2012). [CrossRef] [PubMed]
  49. Y. Gu, G. Gbur, “Reduction of turbulence-induced scintillation by nonuniformly polarized beam arrays,” Opt. Lett. 37(9), 1553–1555 (2012). [CrossRef] [PubMed]
  50. F. Wang, X. Liu, L. Liu, Y. Yuan, Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013). [CrossRef]
  51. X. Liu, Y. Shen, L. Liu, F. Wang, Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38(24), 5323–5326 (2013). [CrossRef] [PubMed]
  52. S. C. H. Wang, M. A. Plonus, “Optical beam propagation for a partially coherent source in the turbulent atmosphere,” J. Opt. Soc. Am. 69(9), 1297–1304 (1979). [CrossRef]
  53. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Department of Commerce, 1970).
  54. A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1954).
  55. M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, P. Vahimaa, “Spreading properties of beams radiated by partially coherent Schell-model sources,” J. Opt. Soc. Am. A 16(1), 106–112 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited