OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1906–1917

A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal

Ying Wu  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1906-1917 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accidental degeneracy in a photonic crystal consisting of a square array of elliptical dielectric cylinders leads to both a semi-Dirac point at the center of the Brillouin zone and an electromagnetic topological transition (ETT). A perturbation method is deduced to affirm the peculiar linear-parabolic dispersion near the semi-Dirac point. An effective medium theory is developed to explain the simultaneous semi-Dirac point and ETT and to show that the photonic crystal is either a zero-refractive-index material or an epsilon-near-zero material at the semi-Dirac point. Drastic changes in the wave manipulation properties at the semi-Dirac point, resulting from ETT, are described.

© 2014 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 26, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 10, 2014
Published: January 21, 2014

Ying Wu, "A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal," Opt. Express 22, 1906-1917 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. Wallace, “The band theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947). [CrossRef]
  2. A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  4. F. D. M. Haldane, S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]
  5. S. Raghu, F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008). [CrossRef]
  6. R. A. Sepkhanov, Y. B. Bazaliy, C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007). [CrossRef]
  7. S. R. Zandbergen, M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104(4), 043903 (2010). [CrossRef] [PubMed]
  8. X. Zhang, “Observing Zitterbewegung for Photons near the Dirac Point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100(11), 113903 (2008). [CrossRef] [PubMed]
  9. X. Zhang, Z. Liu, “Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals,” Phys. Rev. Lett. 101(26), 264303 (2008). [CrossRef] [PubMed]
  10. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011). [CrossRef] [PubMed]
  11. T. Ochiai, M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009). [CrossRef]
  12. V. Yannopapas, “Photonic analog of a spin-polarized system with Rashba spin-orbit coupling,” Phys. Rev. B 83(11), 113101 (2011). [CrossRef]
  13. J. Bravo-Abad, J. D. Joannopoulos, M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012). [CrossRef] [PubMed]
  14. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012). [CrossRef] [PubMed]
  15. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013). [CrossRef] [PubMed]
  16. Y. P. Bliokh, V. Freilikher, F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: A comparative study,” Phys. Rev. B 87(24), 245134 (2013). [CrossRef]
  17. K. Sakoda, “Dirac cone in two- and three-dimensional metamaterials,” Opt. Express 20(4), 3898–3917 (2012). [CrossRef] [PubMed]
  18. K. Sakoda, “Proof of the universality of mode symmetries in creating photonic Dirac cones,” Opt. Express 20(22), 25181–25194 (2012). [CrossRef] [PubMed]
  19. J. Mei, Y. Wu, C. T. Chan, Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B 86(3), 035141 (2012). [CrossRef]
  20. Y. Li, Y. Wu, X. Chen, J. Mei, “Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals,” Opt. Express 21(6), 7699–7711 (2013). [CrossRef] [PubMed]
  21. D. Torrent, J. Sánchez-Dehesa, “Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves,” Phys. Rev. Lett. 108(17), 174301 (2012). [CrossRef] [PubMed]
  22. D. Torrent, D. Mayou, J. Sánchez-Dehesa, “Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B 87(11), 115143 (2013). [CrossRef]
  23. V. Pardo, W. E. Pickett, “Half-Metallic Semi-Dirac-Point Generated by Quantum Confinement in TiO2/VO2 Nanostructures,” Phys. Rev. Lett. 102(16), 166803 (2009). [CrossRef] [PubMed]
  24. S. Banerjee, R. R. P. Singh, V. Pardo, W. E. Pickett, “Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point,” Phys. Rev. Lett. 103(1), 016402 (2009). [CrossRef] [PubMed]
  25. G. Montambaux, F. Piéchon, J. N. Fuchs, M. O. Goerbig, “Merging of Dirac points in a two-dimensional crystal,” Phys. Rev. B 80(15), 153412 (2009). [CrossRef]
  26. M. O. Goerbig, “Electronic properties of graphene in a strong magnetic field,” Rev. Mod. Phys. 83(4), 1193–1243 (2011). [CrossRef]
  27. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012). [CrossRef] [PubMed]
  28. J. Hao, W. Yan, M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010). [CrossRef]
  29. V. C. Nguyen, L. Chen, K. Halterman, “Total Transmission and Total Reflection by Zero Index Metamaterials with Defects,” Phys. Rev. Lett. 105(23), 233908 (2010). [CrossRef] [PubMed]
  30. Y. Wu, J. Li, “Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects,” Appl. Phys. Lett. 102(18), 183105 (2013). [CrossRef]
  31. M. Silveirinha, N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006). [CrossRef] [PubMed]
  32. A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013). [CrossRef]
  33. A. Alu, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007). [CrossRef]
  34. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008). [CrossRef] [PubMed]
  35. N. Engheta, “Materials Science. Pursuing Near-Zero Response,” Science 340(6130), 286–287 (2013). [CrossRef] [PubMed]
  36. B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter 12(34), R435–R461 (2000). [CrossRef]
  37. Y. Wu, J. Li, Z.-Q. Zhang, C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006). [CrossRef]
  38. Y. Lai, Y. Wu, P. Sheng, Z.-Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011). [CrossRef] [PubMed]
  39. H. F. Ma, J. H. Shi, B. G. Cai, T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(12), 123010 (2012). [CrossRef]
  40. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012). [CrossRef]
  41. Q. Cheng, W. X. Jiang, T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited