OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1920–1929

A circuit model for the hybrid resonance modes of paired SRR metamaterials

Yin Poo, Rui-xin Wu, Min Liu, and Ling Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1920-1929 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1868 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To better understand the resonance modes caused by the interelement couplings in the building block of metamaterials, we propose a circuit model for the hybrid resonance modes of paired split ring resonators. The model identifies the electromagnetic coupling between the paired rings by electric and magnetic coupling networks and well explains the variation of hybrid resonance modes with respect to the distance and the twist angle between the rings. The predictions of our model are further proved by experiments.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: October 9, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: January 13, 2014
Published: January 22, 2014

Yin Poo, Rui-xin Wu, Min Liu, and Ling Wang, "A circuit model for the hybrid resonance modes of paired SRR metamaterials," Opt. Express 22, 1920-1929 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. V. G. Veselago, E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater. 5(10), 759–762 (2006). [CrossRef] [PubMed]
  5. M. J. Freire, R. Marques, “Planar magnetoinductive lens for threedimensional subwavelength imaging,” Appl. Phys. Lett. 86(18), 182505 (2005). [CrossRef]
  6. S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010). [CrossRef]
  7. X. Xiong, W.-H. Sun, Y.-J. Bao, M. Wang, R.-W. Peng, C. Sun, X. Lu, J. Shao, Z.-F. Li, N.-B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010). [CrossRef]
  8. G. Dolling, M. Wegener, A. Schadle, S. Burger, S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006). [CrossRef]
  9. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006). [CrossRef] [PubMed]
  10. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111 (2008). [CrossRef]
  11. N. Liu, H. Liu, S. Zhu, H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009). [CrossRef]
  12. A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. J. Stevens, D. J. Edwards, E. Shamonina, “Dimer and polymer metamaterials with alternating electric and magnetic coupling,” Phys. Rev. B 84(12), 125121 (2011). [CrossRef]
  13. R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008). [CrossRef] [PubMed]
  14. A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Application (Gordon and Breach Science, 2001).
  15. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  16. H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006). [CrossRef] [PubMed]
  17. S. V. Zhukovsky, C. Kremers, D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36(12), 2278–2280 (2011). [CrossRef] [PubMed]
  18. R. Marqués, F. Medina, R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002). [CrossRef]
  19. L. Zhou, S. T. Chui, “Eigenmodes of metallic ring systems: a rigorous approach,” Phys. Rev. B 74(3), 035419 (2006). [CrossRef]
  20. R. Plonsey and R. E. Collin, Principles and Applications of Electromagnetic Fields (McGraw-Hill, 1961).
  21. R. P. Feyman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1964,), Vol. 2.
  22. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007). [CrossRef]
  23. D. K. Ghodgaonkar, V. V. Varadan, V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited