OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1930–1939

Temperature effects on dielectric liquid lenses

Hongxia Zhang, Hongwen Ren, Su Xu, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1930-1939 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The thermal stability of dielectric liquid lenses is studied by measuring the focal length at different temperatures. Two types of liquids lenses are investigated: Type-I (SL-5267/glycerol) and Type-II (glycerol/ BK7 matching liquid). A threshold-like behavior is found. Below the threshold temperature, the focal length is temperature insensitive. Above the threshold, the focal length changes exponentially with the temperature. Both refractive index and surface profile are responsible for the focal length change, although the former decreases linearly with the temperature. The threshold temperature of Type-I and Type-II liquid lens are 60°C and 40°C, respectively. Type-I lens shows a good temperature stability in a wide range. Moreover, the lens can recover to its original state even though it is operated at a high temperature.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(220.3630) Optical design and fabrication : Lenses
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Optical Devices

Original Manuscript: December 6, 2013
Revised Manuscript: January 7, 2014
Manuscript Accepted: January 7, 2014
Published: January 22, 2014

Hongxia Zhang, Hongwen Ren, Su Xu, and Shin-Tson Wu, "Temperature effects on dielectric liquid lenses," Opt. Express 22, 1930-1939 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Dong, A. K. Agarwal, D. J. Beebe, H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006). [CrossRef] [PubMed]
  2. S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  3. C. A. López, A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008). [CrossRef]
  4. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009). [CrossRef] [PubMed]
  5. S. Murali, K. P. Thompson, J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009). [CrossRef] [PubMed]
  6. B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011). [CrossRef] [PubMed]
  7. H. Ren, S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007). [CrossRef] [PubMed]
  8. H. Oku, M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009). [CrossRef]
  9. U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35(8), 1278–1280 (2010). [CrossRef] [PubMed]
  10. J. K. Lee, K. W. Park, H. R. Kim, S. H. Kong, “Durability enhancement of a microelectromechanical system-based liquid droplet lens,” Jpn. J. Appl. Phys. 49, 06GN11 (2010).
  11. S. W. Lee, S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007). [CrossRef]
  12. C. A. López, C. C. Lee, A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005). [CrossRef]
  13. D. Koyama, R. Isago, K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010). [CrossRef] [PubMed]
  14. J. Y. An, J. H. Hur, S. Kim, J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011). [CrossRef]
  15. B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” 18th IEEE International Conference on Micro Electro Mechanical Systems, 227–230 (2005).
  16. Y. Park, S. Seo, P. Gruenberg, J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013). [CrossRef]
  17. C. U. Murade, J. M. Oh, D. van den Ende, F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011). [CrossRef] [PubMed]
  18. C. C. Cheng, J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007). [CrossRef] [PubMed]
  19. H. Ren, H. Xianyu, S. Xu, S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008). [CrossRef] [PubMed]
  20. H. Ren, S. Xu, S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010). [CrossRef] [PubMed]
  21. H. Ren, S. Xu, D. Ren, S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011). [CrossRef] [PubMed]
  22. H. Ren, S. Xu, Y. Liu, S. T. Wu, “Electro-optical properties of dielectric liquid microlens,” Opt. Commun. 284(8), 2122–2125 (2011). [CrossRef]
  23. S. Xu, H. Ren, Y. Liu, S. T. Wu, “Dielectric liquid microlens with switchable negative and positive optical power,” J. MEMS 20(1), 297–301 (2011). [CrossRef]
  24. T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003). [CrossRef]
  25. J. Li, C. H. Wen, S. Gauza, R. B. Lu, S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1(1), 51–61 (2005). [CrossRef]
  26. http://en.wikipedia.org/wiki/Surface_tension .
  27. J. D. Bernardin, I. Mudawar, C. B. Walsh, E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited