OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1952–1962

Impact of interface roughness on the performance of broadband blackbody absorber based on dielectric-metal film multilayers

Shy-hauh Guo, Andrei B. Sushkov, Dong Hun Park, H. Dennis Drew, Paul W. Kolb, Warren N. Herman, and Raymond J. Phaneuf  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1952-1962 (2014)
http://dx.doi.org/10.1364/OE.22.001952


View Full Text Article

Enhanced HTML    Acrobat PDF (2412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on factors affecting the performance of a broadband, mid-IR absorber based on multiple, alternating dielectric / metal layers. In particular, we investigate the effect of interface roughness. Atomic layer deposition produces both a dramatic suppression of the interface roughness and a significant increase in the optical absorption as compared to devices fabricated using a conventional thermal evaporation source. Absorption characteristics greater than 80% across a 300 K black body spectrum are achieved. We demonstrate a further increase in this absorption via the inclusion of a patterned, porous anti-reflection layer.

© 2014 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.5770) Optics at surfaces : Roughness
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

History
Original Manuscript: November 21, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 13, 2014
Published: January 23, 2014

Citation
Shy-hauh Guo, Andrei B. Sushkov, Dong Hun Park, H. Dennis Drew, Paul W. Kolb, Warren N. Herman, and Raymond J. Phaneuf, "Impact of interface roughness on the performance of broadband blackbody absorber based on dielectric-metal film multilayers," Opt. Express 22, 1952-1962 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1952


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. E. Narimanov, A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009). [CrossRef]
  2. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
  3. Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008). [CrossRef] [PubMed]
  4. T. D. Corrigan, D. H. Park, H. D. Drew, S.-H. Guo, P. W. Kolb, W. N. Herman, R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012). [CrossRef] [PubMed]
  5. W. Streyer, S. Law, G. Rooney, T. Jacobs, D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013). [CrossRef] [PubMed]
  6. J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008). [CrossRef] [PubMed]
  7. V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008). [CrossRef]
  8. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011). [CrossRef]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]
  11. Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009). [CrossRef]
  12. M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]
  13. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  15. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]
  16. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  17. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]
  18. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009). [CrossRef] [PubMed]
  19. J. J. Monzón, T. Yonte, L. L. Sánchez-Soto, Á. Felipe, “Optimized broadband wide-angle absorber structures,” Appl. Opt. 47(34), 6366–6370 (2008). [CrossRef] [PubMed]
  20. P. Eriksson, J. Y. Andersson, G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994). [CrossRef]
  21. J. J. Monzón, L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33(22), 5137–5141 (1994). [CrossRef] [PubMed]
  22. A. D. Parsons, D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988). [CrossRef]
  23. M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012). [CrossRef] [PubMed]
  24. H. A. Macleod, Thin-film Optical Filters, 3rd ed. (Institute of Physics Publishing, London 2001).
  25. H. Kim, S. M. Rossnagel, “Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition,” J. Vac. Sci. Technol. A 20(3), 802–808 (2002). [CrossRef]
  26. D. H. Park, C. H. Lee, W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14(19), 8866–8884 (2006). [CrossRef] [PubMed]
  27. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  28. X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008). [CrossRef]
  29. K. B. Nguyen, T. D. Nguyen, “Defect coverage profile and propagation of roughness of sputter‐deposited Mo/Si multilayer coating for extreme ultraviolet projection lithography,” J. Vac. Sci. Technol. B 11(6), 2964–2970 (1993). [CrossRef]
  30. A. L. Barabási and H. E. Stanley, Fractal concepts in surface growth (Cambridge University Press, 1995)
  31. M. Matsubara, I. Hirabayashi, “Preparation of ultra-flat YBCO thin films by MOCVD layer-by-layer deposition,” Appl. Surf. Sci. 82, 494–500 (1994). [CrossRef]
  32. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethyl-aluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005). [CrossRef]
  33. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010). [CrossRef] [PubMed]
  34. I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008). [CrossRef] [PubMed]
  35. P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009). [CrossRef] [PubMed]
  36. E. Hecht, “Principles of Optics”, 2nd ed. (Addison-Wesley, Reading, MA, 1987), p. 375.
  37. L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005). [CrossRef]
  38. E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited