OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1963–1970

Maximal light-energy transfer through a dielectric/metal-layered electrode on a photoactive device

Kyoung-Ho Kim and Q-Han Park  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1963-1970 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2011 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication of an optimized low reflective dielectric/metal-layered electrode that provides significant electrical conductivity and light transparency in the near-infrared wavelength regime. By making the metal film thickness thick enough and choosing a proper dielectric layer with a certain thickness, we show that our suggested electrode significantly reduces the light reflection while preserving high electrical conductivity. We demonstrate our optimized electrodes present a highly conductive surface with a sheet resistance of 5.2 Ω/sq and a high light transmittance of near 85% in the near-infrared regime. We also apply our optimized electrode to thin-film organic photovoltaic devices and show the electrode helps in absorbing light energy inside an active layer. We believe that this simple but powerful layered electrode will pave the way for designing transparent electrodes on photoactive devices.

© 2014 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(310.4165) Thin films : Multilayer design
(310.6845) Thin films : Thin film devices and applications
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Thin Films

Original Manuscript: November 25, 2013
Revised Manuscript: December 22, 2013
Manuscript Accepted: December 23, 2013
Published: January 23, 2014

Kyoung-Ho Kim and Q-Han Park, "Maximal light-energy transfer through a dielectric/metal-layered electrode on a photoactive device," Opt. Express 22, 1963-1970 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012). [CrossRef]
  3. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007). [CrossRef] [PubMed]
  4. O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010). [CrossRef] [PubMed]
  5. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005). [CrossRef] [PubMed]
  6. T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009). [CrossRef]
  7. C. Guillén, J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films 520(1), 1–17 (2011). [CrossRef]
  8. M. V. Schneider, “Schottky barrier photodiodes with antireflection coating,” Bell Syst. Tech. J. 45(9), 1611–1638 (1966). [CrossRef]
  9. H. J. Hovel, “Transparency of thin metal films on semiconductor substrates,” J. Appl. Phys. 47(11), 4968–4970 (1976). [CrossRef]
  10. K.-H. Kim, Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3, 1062 (2013). [CrossRef] [PubMed]
  11. L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005). [CrossRef]
  12. X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001). [CrossRef]
  13. R. Steim, F. R. Kogler, C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem. 20(13), 2499–2512 (2010). [CrossRef]
  14. X. Wang, K. P. Chen, M. Zhao, D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to films,” Opt. Express 18(24), 24859–24867 (2010). [CrossRef] [PubMed]
  15. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011). [CrossRef] [PubMed]
  16. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor and Francis, 2010).
  17. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976). [CrossRef]
  18. G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007). [CrossRef]
  19. J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012). [CrossRef] [PubMed]
  20. D. B. Fraser, H. D. Cook, “Highly conductive, transparent films of sputtered In[sub 2−x]Sn[sub x]O[sub 3−y],” J. Electrochem. Soc. 119(10), 1368–1374 (1972). [CrossRef]
  21. B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited