OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1981–1989

Direct imaging of fluorescent structures behind turbid layers

Giulia Ghielmetti and Christof M. Aegerter  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1981-1989 (2014)
http://dx.doi.org/10.1364/OE.22.001981


View Full Text Article

Enhanced HTML    Acrobat PDF (27881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to directly image fluorescent structures inside turbid media. This is based on wave-front shaping to optimize the scattered light onto a single fluorescent particle, as the optical memory effect for a scanning image of the surroundings of this particle. We show that iterating the optimization leads to the focusing on a single particle whose surroundings are subsequently scanned. In combination with a parabolic phase pattern, this method can be extended to a three dimensional imaging method inside turbid media.

© 2014 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.0180) Imaging systems : Microscopy
(110.7050) Imaging systems : Turbid media
(290.4210) Scattering : Multiple scattering

ToC Category:
Imaging Systems

History
Original Manuscript: December 3, 2013
Revised Manuscript: January 8, 2014
Manuscript Accepted: January 12, 2014
Published: January 23, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Giulia Ghielmetti and Christof M. Aegerter, "Direct imaging of fluorescent structures behind turbid layers," Opt. Express 22, 1981-1989 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1981


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012). [CrossRef]
  2. I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef] [PubMed]
  3. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011). [CrossRef] [PubMed]
  4. O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011). [CrossRef]
  5. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011). [CrossRef] [PubMed]
  6. J. H. Park, C. H. Park, H. Yu, Y. H. Cho, Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012). [CrossRef] [PubMed]
  7. E. Small, O. Katz, Y. Guan, Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012). [CrossRef]
  8. J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012). [CrossRef]
  9. Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012). [CrossRef]
  10. R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20, 16532–16543 (2012). [CrossRef]
  11. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. D. Lee, Y. K. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013). [CrossRef] [PubMed]
  12. Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013). [CrossRef]
  13. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010). [CrossRef] [PubMed]
  14. I. M. Vellekoop, C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35, 1245–1247 (2010). [CrossRef] [PubMed]
  15. G. Ghielmetti, C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Lett. 20, 3744–3752 (2012).
  16. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010). [CrossRef] [PubMed]
  17. X. Yang, C. L. Hsieh, Y. Pu, D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012). [CrossRef] [PubMed]
  18. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012). [CrossRef] [PubMed]
  19. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012). [CrossRef] [PubMed]
  20. I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988). [CrossRef] [PubMed]
  21. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982). [CrossRef]
  22. S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988). [CrossRef] [PubMed]
  23. Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008). [CrossRef] [PubMed]
  24. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef] [PubMed]
  25. S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011). [CrossRef]
  26. C. Prada, M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20, 151–163 (1994). [CrossRef]
  27. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered meta-materials,” Opt. Express 16, 67–80 (2008). [CrossRef] [PubMed]
  28. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011). [CrossRef] [PubMed]
  29. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012). [CrossRef] [PubMed]
  30. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011). [CrossRef] [PubMed]
  31. I. M. Vellekoop, C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited