OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1990–1996

Acousto-optic resonant coupling of three spatial modes in an optical fiber

Hee Su Park and Kwang Yong Song  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1990-1996 (2014)
http://dx.doi.org/10.1364/OE.22.001990


View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

© 2014 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.1040) Optical devices : Acousto-optical devices
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Fiber Optics

History
Original Manuscript: December 6, 2013
Revised Manuscript: January 10, 2014
Manuscript Accepted: January 12, 2014
Published: January 23, 2014

Citation
Hee Su Park and Kwang Yong Song, "Acousto-optic resonant coupling of three spatial modes in an optical fiber," Opt. Express 22, 1990-1996 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009). [CrossRef]
  2. D. Dragoman, M. Dragoman, Quantum-Classical Analogies(Springer, Berlin, 2004). [CrossRef]
  3. C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013). [CrossRef]
  4. A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005). [CrossRef]
  5. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  6. M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef] [PubMed]
  7. L. Maleki, A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004). [CrossRef] [PubMed]
  8. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006). [CrossRef]
  9. S.-Y. Tseng, M.-C. Wu, “Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides,” J. Lightwave Technol. 28, 3529–3534 (2010).
  10. X. Xiong, C.-L. Zou, X.-F. Ren, G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097–17107 (2013). [CrossRef] [PubMed]
  11. H. Suchowski, G. Porat, A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev., doi: (2013). [CrossRef]
  12. K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013). [CrossRef]
  13. D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013). [CrossRef]
  14. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013). [CrossRef] [PubMed]
  15. H. S. Park, K. Y. Song, S. H. Yun, B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002). [CrossRef]
  16. The indices i and j of a linearly polarized LPij mode denote the number of asymmetry axes and the number of lobes along the radius, respectively, of the transverse field distribution.
  17. T. A. Birks, P. S. J. Russell, D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996). [CrossRef]
  18. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, USA, 2007).
  19. S. E. Harris, J. E. Field, A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef] [PubMed]
  20. K.-J. Boller, A. Imamoğlu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  21. M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  22. Although our scheme is closer to the ladder-type configuration considering the order of the propagation constants, we relate the current scheme to the lambda-type configuration to avoid unnecessary confusion. Whereas the dark state in a ladder-type atomic configuration is not strictly stable, our implementation does not contain decaying processes and therefore has a steady dark state leading to an efficient induced transparency.
  23. P. M. Anisimov, J. P. Dowling, B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011). [CrossRef] [PubMed]
  24. M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009). [CrossRef] [PubMed]
  25. The retained maximum transmission (83%) and the voltage (9.5 Vpp) of the next minimum transmission, however, deviate from 100% and 2 × 4 Vpp, respectively. These discrepancies arise mainly from an off-resonant coupling due to non-uniformity of the fibre and also from the saturation of the acoustic transducer efficiency.
  26. S. H. Autler, C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955). [CrossRef]
  27. H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998). [CrossRef]
  28. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited