OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1997–2006

Photoluminescence characterization in silicon nanowire fabricated by thermal oxidation of nano-scale Si fin structure

Yoko Sakurai, Kuniyuki Kakushima, Kenji Ohmori, Keisaku Yamada, Hiroshi Iwai, Kenji Shiraishi, and Shintaro Nomura  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1997-2006 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Low-temperature photoluminescence (PL) spectra of electron-hole systems in Si nanowires (NWs) prepared by thermal oxidization of Si fin structures were studied. Mapping of PL reveals that NWs with uniform width are formed over a large area. Annealing temperature dependence of PL peak intensities was maximized at 400 °C for each NW type, which are consistent with previous reports. Our results confirmed that the micro-PL demonstrated here is one of the important methods for characterizations of the interface defects in Si NWs.

© 2014 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission

ToC Category:

Original Manuscript: December 6, 2013
Manuscript Accepted: December 24, 2013
Published: January 23, 2014

Yoko Sakurai, Kuniyuki Kakushima, Kenji Ohmori, Keisaku Yamada, Hiroshi Iwai, Kenji Shiraishi, and Shintaro Nomura, "Photoluminescence characterization in silicon nanowire fabricated by thermal oxidation of nano-scale Si fin structure," Opt. Express 22, 1997-2006 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Iwai, “Roadmap for 22 nm and beyond,” Microelectron. Eng. 86(7–9), 1520–1528 (2009). [CrossRef]
  2. S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011). [CrossRef]
  3. M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008). [CrossRef]
  4. J. Knoch, S. Mantl, J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid State Electron. 51(4), 572–578 (2007). [CrossRef]
  5. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003). [CrossRef]
  6. Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010). [CrossRef]
  7. Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001). [CrossRef] [PubMed]
  8. A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012). [CrossRef] [PubMed]
  9. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  10. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007). [CrossRef]
  11. O. Hayden, A. B. Greytak, D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 17(6), 701–704 (2005). [CrossRef]
  12. Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982). [CrossRef]
  13. M. V. Fischetti, S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Phys. Rev. B Condens. Matter 38(14), 9721–9745 (1988). [CrossRef] [PubMed]
  14. T. Ogawa, T. Takagahara, “Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system,” Phys. Rev. B Condens. Matter 43(17), 14325–14328 (1991). [CrossRef] [PubMed]
  15. T. Ogawa, T. Takagahara, “Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B Condens. Matter 44(15), 8138–8156 (1991). [CrossRef] [PubMed]
  16. P. J. Dean, J. R. Haynes, W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967). [CrossRef]
  17. W. P. Dumke, “Two-phonon indirect transitions and lattice scattering in Si,” Phys. Rev. 118(4), 938–939 (1960). [CrossRef]
  18. L. V. Keldysh, “The electron-hole liquid in semiconductors,” Contemp. Phys. 27(5), 395–428 (1986). [CrossRef]
  19. W. F. Brinkman, T. M. Rice, “Electron-hole liquids in semiconductors,” Phys. Rev. B 7(4), 1508–1523 (1973). [CrossRef]
  20. J. C. Hensel, T. G. Phillips, T. M. Rice, and G. A. Thomas, Solid States of Physics (Academic, 1977), Vol. 32.
  21. O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008). [CrossRef]
  22. D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992). [CrossRef]
  23. D. J. Lockwood, Z. H. Lu, J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996). [CrossRef] [PubMed]
  24. H. D. Barber, “Effective mass and intrinsic concentration in silicon,” Solid State Electron. 10(11), 1039–1051 (1967). [CrossRef]
  25. M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004). [CrossRef]
  26. H. Ohta, T. Watanabe, I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A Molecular dynamics Study,” Jpn. J. Appl. Phys. 46(5B), 3277–3282 (2007). [CrossRef]
  27. K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000). [CrossRef]
  28. S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001). [CrossRef]
  29. Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002). [CrossRef]
  30. L. D. Thanh, P. Balk, “Elimination and generation of Si/ SiO2 interface traps by low temperature hydrogen annealing,” J. Electrochem. Soc. 135(7), 1797–1801 (1988). [CrossRef]
  31. M. L. Reed, J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys. 63(12), 5776–5793 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited