OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2007–2012

Resonant modes of 12-fold symmetric defect free photonic quasicrystal

Minfeng Chen, Yun-Jing Li, Yuh-Jen Cheng, Yai-Chung Chang, and Chun-Yen Chang  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 2007-2012 (2014)
http://dx.doi.org/10.1364/OE.22.002007


View Full Text Article

Enhanced HTML    Acrobat PDF (3475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work investigates the resonant modes of a 12-fold symmetric defect free photonic quasicrystal (PQC) nanorod array using finite difference time domain (FDTD) simulation. Localized modes can exist in PQC without introducing defects due to the lack of translational symmetry. The resonant modes of the unit cell PQC and the one time expanded PQC from unit cell are systematically examined. The resonant spectrum is that of a single rod modified by the interaction among PQC nanorods. The mode confinement is contributed by guided resonance and destructive interference scattering. The self-scaling similarity of resonant spectrum and mode profile are also investigated.

© 2014 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 17, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: January 7, 2014
Published: January 23, 2014

Citation
Minfeng Chen, Yun-Jing Li, Yuh-Jen Cheng, Yai-Chung Chang, and Chun-Yen Chang, "Resonant modes of 12-fold symmetric defect free photonic quasicrystal," Opt. Express 22, 2007-2012 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-2007


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987). [CrossRef] [PubMed]
  2. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett.72(5), 633–636 (1994). [CrossRef] [PubMed]
  3. T. Hattori, N. Tsurumachi, S. Kawato, and H. Nakatsuka, “Photonic dispersion relation in a one-dimensional quasicrystal,” Phys. Rev. B Condens. Matter50(6), 4220–4223 (1994). [CrossRef] [PubMed]
  4. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003). [CrossRef] [PubMed]
  5. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature436(7053), 993–996 (2005). [CrossRef] [PubMed]
  6. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5(12), 942–945 (2006). [CrossRef] [PubMed]
  7. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007). [CrossRef] [PubMed]
  8. S. Walter and S.-W. Daniel, “Photonic and phononic quasicrystals,” J. Phys. D Appl. Phys.40(13), R229–R247 (2007). [CrossRef]
  9. K. Mnaymneh and R. C. Gauthier, “Mode localization and band-gap formation in defect-free photonic quasicrystals,” Opt. Express15(8), 5089–5099 (2007). [CrossRef] [PubMed]
  10. G. Gumbs and M. K. Ali, “Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices,” Phys. Rev. Lett.60(11), 1081–1084 (1988). [CrossRef] [PubMed]
  11. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the Two-Dimensional Quasiperiodicity of Photonic Quasicrystals with a Penrose Lattice,” Phys. Rev. Lett.92(12), 123906 (2004). [CrossRef] [PubMed]
  12. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000). [CrossRef] [PubMed]
  13. K. Nozaki and T. Baba, “Lasing Characteristics of 12-Fold Symmetric Quasi-periodic Photonic Crystal Slab Nanolasers,” Jpn. J. Appl. Phys.45(8A), 6087–6090 (2006). [CrossRef]
  14. K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett.84(24), 4875–4877 (2004). [CrossRef]
  15. J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, “Excitonic polaritons in Fibonacci quasicrystals,” Opt. Express16(20), 15382–15387 (2008). [CrossRef] [PubMed]
  16. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics4(3), 165–169 (2010). [CrossRef]
  17. S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, and S.-B. Kim, “Photonic quasicrystal single-cell cavity mode,” Appl. Phys. Lett.86(3), 031101 (2005). [CrossRef]
  18. S. P. Chang, K. P. Sou, C. H. Chen, Y. J. Cheng, J. K. Huang, C. H. Lin, H. C. Kuo, C. Y. Chang, and W. F. Hsieh, “Lasing action in gallium nitride quasicrystal nanorod arrays,” Opt. Express20(11), 12457–12462 (2012). [CrossRef] [PubMed]
  19. M. Oxborrow and C. L. Henley, “Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals,” Phys. Rev. B Condens. Matter48(10), 6966–6998 (1993). [CrossRef] [PubMed]
  20. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited