OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2013–2030

Precise measurement of laser power using an optomechanical system

Kazuhiro Agatsuma, Daniel Friedrich, Stefan Ballmer, Giulia DeSalvo, Shihori Sakata, Erina Nishida, and Seiji Kawamura  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 2013-2030 (2014)
http://dx.doi.org/10.1364/OE.22.002013


View Full Text Article

Enhanced HTML    Acrobat PDF (1657 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper shows a novel method to precisely measure the laser power using an optomechanical system. By measuring a mirror displacement caused by the reflection of an amplitude modulated laser beam, the number of photons in the incident continuous-wave laser can be precisely measured. We have demonstrated this principle by means of a prototype experiment uses a suspended 25 mg mirror as an mechanical oscillator coupled with the radiation pressure and a Michelson interferometer as the displacement sensor. A measurement of the laser power with an uncertainty of less than one percent (1σ) is achievable.

© 2014 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 19, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: December 14, 2013
Published: January 23, 2014

Citation
Kazuhiro Agatsuma, Daniel Friedrich, Stefan Ballmer, Giulia DeSalvo, Shihori Sakata, Erina Nishida, and Seiji Kawamura, "Precise measurement of laser power using an optomechanical system," Opt. Express 22, 2013-2030 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-2013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Maiman, R. Hoskins, I. D’Haenens, C. Asawa, V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961). [CrossRef]
  2. T. Li, S. D. Sims, “A calorimeter for energy measurements of optical masers,” Appl. Opt. 1, 325 (1962). [CrossRef]
  3. E. D. West, K. L. Churney, “Theory of isoperibol calorimetry for laser power and energy measurements,” J. Appl. Phys. 41, 2705 (1970). [CrossRef]
  4. The web page of NIST, http://www.nist.gov/calibrations/lasers-optoelectronic-components.cfm
  5. D. J. Livigni, C. L. Cromer, T. R. Scott, B. Carol Johnson, Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia, 35, 819–827 (1998). [CrossRef]
  6. J. M. Houston, J. P. Rice, “NIST reference cryogenic radiometer designed for versatile performance,” Metrologia 43, S31–S35 (2006). [CrossRef]
  7. D. Deacon, L. Elias, J. Madey, G. Ramian, H. Schwettman, T. Smith, “First operation of a free-electron laser,” Phys. Rev. Lett. 38, 892–894 (1977). [CrossRef]
  8. J. Blau, K. Cohn, W. B. Colson, C. Pogue, M. Stanton, A. Yilmaz, “Free electron lasers in 2011,” in Proceedings of FEL2011, (2011), pp. 274–278.
  9. M. Kato, T. Tanaka, T. Kurosawa, N. Saito, M. Richter, A. A. Sorokin, K. Tiedtke, T. Kudo, K. Tono, M. Yabashi, T. Ishikawa, “Pulse energy measurement at the hard x-ray laser in Japan,” Appl. Phys. Lett. 101, 023503 (2012). [CrossRef]
  10. H. Kimble, Y. Levin, A. Matsko, K. Thorne, S. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001). [CrossRef]
  11. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100, 033602 (2008). [CrossRef] [PubMed]
  12. R. Schnabel, N. Mavalvala, D. E. McClelland, P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nature Commun. 1, 121 (2010). [CrossRef]
  13. D. Clubley, G. Newton, K. Skeldon, J. Hough, “Calibration of the Glasgow 10 m prototype laser interferometric gravitational wave detector using photon pressure,” Phys. Lett. A 283, 85–88 (2001). [CrossRef]
  14. K. Mossavi, M. Hewitson, S. Hild, F. Seifert, U. Weiland, J. R. Smith, H. Lück, H. Grote, B. Willke, K. Danzmann, “A photon pressure calibrator for the GEO 600 gravitational wave detector,” Phys. Lett. A 353, 1–3 (2006). [CrossRef]
  15. K. Agatsuma, T. Mori, S. Ballmer, G. DeSalvo, S. Sakata, E. Nishida, S. Kawamura, “High accuracy measurement of the quantum efficiency using radiation pressure,” J. Phys. Conf. Ser. 363, 012002 (2012). [CrossRef]
  16. S. Sakata, O. Miyakawa, A. Nishizawa, H. Ishizaki, S. Kawamura, “Measurement of angular antispring effect in optical cavity by radiation pressure,” Phys. Rev. D 81, 064023 (2010). [CrossRef]
  17. Guide to the Expression of Uncertainty in Measurement (BIPM, IEC, IFCC, ISO, IUPAC, OIML, 1995).
  18. For example, the micro analytical balances (BM-20 A&D Inc.) has 0.0025 mg of the repeatability (standard deviation). http://www.aandd.jp/products/weighing/balance/analytical/bm.html
  19. S. Hild, Beyond the First Generation: Extending the Science Range of the Gravitational Wave Detector GEO 600 (Gottfried Wilhelm Leibniz Universitat Hannover, 2007), pp. 86–91.
  20. S. Hild, M. Brinkmann, K. Danzmann, H. Grote, M. Hewitson, J. Hough, H. Lück, I. Martin, K. Mossavi, N. Rainer, S. Reid, J. R. Smith, K. Strain, M. Weinert, P. Willems, B. Willke, W. Winkler, “Photon-pressure-induced test mass deformation in gravitational-wave detectors,” Classical Quant. Grav. 24, 5681–5688 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited