OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2031–2042

Plasmonic glasses: Optical properties of amorphous metal-dielectric composites

Tomasz J. Antosiewicz and S. Peter Apell  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 2031-2042 (2014)
http://dx.doi.org/10.1364/OE.22.002031


View Full Text Article

Enhanced HTML    Acrobat PDF (1453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic glasses composed of metallic inclusions in a host dielectric medium are investigated for their optical properties. Such structures characterized by short-range order can be easily fabricated using bottom-up, self-organization methods and may be utilized in a number of applications, thus, quantification of their properties is important. We show, using T-Matrix calculations of 1D, 2D, and 3D plasmonic glasses, that their plasmon resonance position oscillates as a function of the particle spacing yielding blue- and redshifts up to 0.3 eV in the visible range with respect to the single particle surface plasmon. Their properties are discussed in light of an analytical model of an average particle’s polarizability that originates from a coupled dipole methodology.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(290.2200) Scattering : Extinction
(160.4236) Materials : Nanomaterials

ToC Category:
Plasmonics

History
Original Manuscript: October 4, 2013
Revised Manuscript: November 5, 2013
Manuscript Accepted: November 12, 2013
Published: January 23, 2014

Citation
Tomasz J. Antosiewicz and S. Peter Apell, "Plasmonic glasses: Optical properties of amorphous metal-dielectric composites," Opt. Express 22, 2031-2042 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-2031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011). [CrossRef] [PubMed]
  2. R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012). [CrossRef]
  3. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007). [CrossRef]
  4. N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012). [CrossRef]
  5. K. Güngör, E. Ünal, H. V. Demir, “Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement,” Opt. Express 21, 23097–23106 (2013). [CrossRef] [PubMed]
  6. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998). [CrossRef] [PubMed]
  7. A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999). [CrossRef]
  8. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000). [CrossRef] [PubMed]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000). [CrossRef] [PubMed]
  10. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003). [CrossRef]
  11. B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008). [CrossRef] [PubMed]
  12. V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011). [CrossRef]
  13. T. L. Temple, D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys. 109, 084343 (2011). [CrossRef]
  14. K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).
  15. M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon gesonators,” Opt. Express 20, 13311–13319 (2012). [CrossRef] [PubMed]
  16. C. Hägglund, S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys Chem. Lett. 3, 1275–1285 (2012). [CrossRef]
  17. S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012). [CrossRef] [PubMed]
  18. C. Rockstuhl, T. Scharf, eds., Amorphous Nanophotonics (Springer, 2013). [CrossRef]
  19. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013). [CrossRef] [PubMed]
  20. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009). [CrossRef]
  21. R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012). [CrossRef]
  22. S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011). [CrossRef]
  23. S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013). [CrossRef] [PubMed]
  24. A. V. Panov, “Impact of interparticle dipoledipole interactions on optical nonlinearity of nanocomposites,” J. Mod. Opt. 60, 915–919 (2013). [CrossRef]
  25. J. Wang, A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011). [CrossRef] [PubMed]
  26. D. W. Mackowski, “Calculation of total cross section of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
  27. E. L. Hinrichsen, J. Feder, T. Jøssang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986). [CrossRef]
  28. T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012). [CrossRef]
  29. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26, 517–527 (2009). [CrossRef]
  30. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  31. L. Zhao, K. L. Kelly, G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003). [CrossRef]
  32. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited