OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2092–2104

Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air

Yong Ma, Hao Li, ZiYu Gu, Wim Ubachs, Yin Yu, Jun Huang, Bo Zhou, Yuanqing Wang, and Kun Liang  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 2092-2104 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the basis of experimental Rayleigh-Brillouin scattering data in gaseous nitrogen and air, simulations are performed to describe the observed frequency profiles in analytical form. The experimental data pertain to a λ = 366 nm scattering wavelength, a 90° scattering angle, pressures of 1 and 3 bar, and temperatures in the range 250 – 340 K. Two different models are used to represent the RB-profiles, to distinguish the RB-peaks, and to obtain the Brillouin shift associated with the acoustic waves generated in a gaseous medium. Calculations in the framework of V3 and G3 models, exhibiting composite profiles of three distinct peaks of Voigt or Gaussian functions, are compared to observation. Fitting results show that the V3 model yields an improvement over the G3 model. This mathematical model provides an even better representation of the observed profiles than the Tenti S6 model, which is considered to be the optimum representation in terms of physical parameters. For the derivation of Brillouin shifts, both models perform well at high gas pressure, while at lower pressures, the V3 model yields a higher accuracy than the G3 model.

© 2014 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.5830) Scattering : Scattering, Brillouin
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:

Original Manuscript: October 7, 2013
Manuscript Accepted: January 14, 2014
Published: January 24, 2014

Yong Ma, Hao Li, ZiYu Gu, Wim Ubachs, Yin Yu, Jun Huang, Bo Zhou, Yuanqing Wang, and Kun Liang, "Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air," Opt. Express 22, 2092-2104 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Mountain, “Spectral distribution of scattered light in a simple fluid,” Rev. Mod. Phys. 38(1), 205–214 (1966). [CrossRef]
  2. X. Bao, L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011). [CrossRef] [PubMed]
  3. S. Xie, M. Pang, X. Bao, L. Chen, “Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing,” Opt. Express 20(6), 6385–6399 (2012). [CrossRef] [PubMed]
  4. E. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002). [CrossRef]
  5. K. Schorstein, E. S. Fry, T. Walther, “Depth-resolved temperature measurements of water using the Brillouin lidar technique,” Appl. Phys. B 97(4), 931–934 (2009). [CrossRef]
  6. J. Huang, Y. Ma, B. Zhou, H. Li, Y. Yu, K. Liang, “Processing method of spectral measurement using F-P etalon and ICCD,” Opt. Express 20(17), 18568–18578 (2012). [CrossRef] [PubMed]
  7. J. Shi, Y. Tang, H. Wei, L. Zhang, D. Zhang, J. Shi, W. Gong, X. He, K. Yang, D. Liu, “Temperature dependence of threshold and gain coefficient of stimulated Brillouin scattering in water,” Appl. Phys. B 108(4), 717–720 (2012). [CrossRef]
  8. B. Witschas, M. O. Vieitez, E. J. van Duijn, O. Reitebuch, W. van de Water, W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49(22), 4217–4227 (2010). [CrossRef] [PubMed]
  9. Z. Gu, W. Ubachs, “Temperature-dependent bulk viscosity of nitrogen gas determined from spontaneous Rayleigh-Brillouin scattering,” Opt. Lett. 38(7), 1110–1112 (2013). [CrossRef] [PubMed]
  10. Z. Gu, M. O. Vieitez, E. J. van Duijn, W. Ubachs, “A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83(5), 053112 (2012). [CrossRef] [PubMed]
  11. L. Zou, X. Bao, S. Afshar V, L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29(13), 1485–1487 (2004). [CrossRef] [PubMed]
  12. K. Schorstein, A. Popescu, M. Gobel, T. Walther, “Remote water temperature measurements based on Brillouin scattering with a frequency-doubled pulsed Yb:doped fiber amplifier,” Sensors (Basel Switzerland) 8(9), 5820–5831 (2008). [CrossRef]
  13. K. Liang, Y. Ma, J. Huang, H. Li, Y. Yu, “Precise measurement of Brillouin scattering spectrum in the ocean using F–P etalon and ICCD,” Appl. Phys. B 105(2), 421–425 (2011). [CrossRef]
  14. K. Liang, Y. Ma, Y. Yu, J. Huang, H. Li, “Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth,” Opt. Eng. 51(6), 066002 (2012). [CrossRef]
  15. J. Xu, X. Ren, W. Gong, R. Dai, D. Liu, “Measurement of the bulk viscosity of liquid by Brillouin scattering,” Appl. Opt. 42(33), 6704–6709 (2003). [CrossRef] [PubMed]
  16. D. Liu, J. Xu, R. Li, R. Dai, W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203(3-6), 335–340 (2002). [CrossRef]
  17. A. Griffin, “Brillouin light scattering from crystals in the hydrodynamic region,” Rev. Mod. Phys. 40(1), 167–205 (1968). [CrossRef]
  18. R. D. Mountain, “Thermal relaxation and Brillouin scattering in liquids,” J. Res. Natl. Bur. Stand. Sect. A 70A(3), 207–220 (1966). [CrossRef]
  19. Q. Zheng, “On the Rayleigh-Brillouin scattering in air,” PhD thesis, University of New Hampshire (2004).
  20. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52(4), 285–290 (1974).
  21. C. Boley, R. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50(18), 2158–2173 (1972). [CrossRef]
  22. B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50(3), 267–270 (2011). [CrossRef] [PubMed]
  23. X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002). [CrossRef] [PubMed]
  24. Y. Ma, F. Fan, K. Liang, H. Li, Y. Yu, B. Zhou, “An analytical model for Rayleigh–Brillouin scattering spectra in gases,” J. Opt. 14(9), 095703 (2012). [CrossRef]
  25. Z. Gu, B. Witschas, W. van de Water, W. Ubachs, “Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures,” Appl. Opt. 52(19), 4640–4651 (2013). [CrossRef] [PubMed]
  26. J. P. Boon and S. Yip, Molecular Hydrodynamics, (McGraw-Hill, 1980).
  27. C. D. Geisler, S. Greenberg, “A two-stage nonlinear cochlear model possesses automatic gain control,” J. Acoust. Soc. Am. 80(5), 1359–1363 (1986). [CrossRef] [PubMed]
  28. G. S. K. Wong, T. F. W. Embleton, “Variation of specific heats and of specific heat ratio in air with humidity,” J. Acoust. Soc. Am. 76(2), 555–559 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited