OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2132–2140

Controlling Fano resonance of ring/crescent-ring plasmonic nanostructure with Bessel beam

Fajun Xiao, Weiren Zhu, Malin Premaratne, and Jianlin Zhao  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 2132-2140 (2014)
http://dx.doi.org/10.1364/OE.22.002132


View Full Text Article

Enhanced HTML    Acrobat PDF (3113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method to dynamically control the Fano resonance of a ring/crescent-ring gold nanostructure by spatially changing the phase distribution of a probe Bessel beam. We demonstrate that a highly tunable Fano interference between the quadrupole and bright dipole modes can be realized in the near-infrared range. Even though a complex interference between a broad resonance and a narrower resonance lead to these observations, we show that a simple coupled oscillator model can accurately describe the behavior, providing valuable insights into the dynamics of the system. A further analysis of this structure uncovers a series of interesting phenomena such as anticrossing, sign changing of coupling and the spectral inversion of quadrupole and bright dipole modes. We further show that near field enhancement at Fano resonance can be actively controlled by modulating the phase distribution of the exciting incident Bessel beam.

© 2014 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(230.4910) Optical devices : Oscillators
(260.5740) Physical optics : Resonance
(290.0290) Scattering : Scattering
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Plasmonics

History
Original Manuscript: November 21, 2013
Revised Manuscript: January 1, 2014
Manuscript Accepted: January 3, 2014
Published: January 24, 2014

Citation
Fajun Xiao, Weiren Zhu, Malin Premaratne, and Jianlin Zhao, "Controlling Fano resonance of ring/crescent-ring plasmonic nanostructure with Bessel beam," Opt. Express 22, 2132-2140 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-2132


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005). [CrossRef]
  2. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  3. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013). [CrossRef]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  6. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012). [CrossRef] [PubMed]
  7. S. B. Raghunathan, H. F. Schouten, W. Ubachs, B. E. Kim, C. H. Gan, T. D. Visser, “Dynamic beam steering from a subwavelength slit by selective excitation of guided modes,” Phys. Rev. Lett. 111(15), 153901 (2013). [CrossRef] [PubMed]
  8. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008). [CrossRef] [PubMed]
  9. S. Peng, J. M. McMahon, G. C. Schatz, S. K. Gray, Y. Sun, “Reversing the size-dependence of surface plasmon resonances,” Proc. Natl. Acad. Sci. U.S.A. 107(33), 14530–14534 (2010). [CrossRef] [PubMed]
  10. K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010). [CrossRef] [PubMed]
  11. F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007). [CrossRef] [PubMed]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  13. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  14. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1(2), 219–228 (2006). [CrossRef] [PubMed]
  15. T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine 2(1), 125–132 (2007). [CrossRef] [PubMed]
  16. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  17. U. Becker, T. Prescher, E. Schmidt, B. Sonntag, H.-E. Wetzel, “Decay channels of the discrete and continuum Xe 4d resonances,” Phys. Rev. A 33(6), 3891–3899 (1986). [CrossRef] [PubMed]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  19. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  20. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013). [CrossRef] [PubMed]
  21. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  22. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  23. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  24. R. Singh, I. A. Al-Naib, M. Koch, W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef] [PubMed]
  25. E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013). [CrossRef] [PubMed]
  26. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011). [CrossRef] [PubMed]
  27. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011). [CrossRef] [PubMed]
  28. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012). [CrossRef] [PubMed]
  29. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010). [CrossRef] [PubMed]
  30. A. Lovera, B. Gallinet, P. Nordlander, O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013). [CrossRef] [PubMed]
  31. N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. Vandenbosch, V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011). [CrossRef] [PubMed]
  32. P. B. Johnson, R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  33. E. Prodan, P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004). [CrossRef] [PubMed]
  34. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  35. R. Singh, I. A. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011). [CrossRef]
  36. M. A. Kats, N. Yu, P. Genevet, Z. Gaburro, F. Capasso, “Effect of radiation damping on the spectral response of plasmonic components,” Opt. Express 19(22), 21748–21753 (2011). [CrossRef] [PubMed]
  37. L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited