OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2141–2149

Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators

Linjie Zhou, Haike Zhu, Heng Zhang, and Jianping Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 2141-2149 (2014)
http://dx.doi.org/10.1364/OE.22.002141


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the photoconductive effect of a p-i-p micro-heater integrated in a microring resonator. Due to the surface state absorption (SSA) and two photon absorption (TPA) of optical wave around 1550 nm, free carriers are generated in the silicon waveguide, leading to the modulation of silicon conductivity and thus the current flowing through it. The current-voltage (I-V) response of the p-i-p diode is dependent on the bias voltage and can be divided into ohmic-law regime and space-charge-limited regime. The resonance peak current is more sensitive to optical power in the ohmic-law regime. Such a phenomenon can also be utilized to monitor the optical power in the waveguide.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.6840) Materials : Thermo-optical materials
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: November 27, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 16, 2014
Published: January 24, 2014

Citation
Linjie Zhou, Haike Zhu, Heng Zhang, and Jianping Chen, "Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators," Opt. Express 22, 2141-2149 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-2141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed and A. P. Knights, Silicon photonics (Wiley Online Library, 2008).
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  3. M. Asghari, “Silicon photonics: a low cost integration platform for datacom and telecom applications,” Proc. OFC/NFOEC’2008, paper NThA4 (2008). [CrossRef]
  4. E. R. Fuchs, R. E. Kirchain, S. Liu, “The future of silicon photonics: Not so fast? Insights from 100G ethernet LAN transceivers,” J. Lightwave Technol. 29(15), 2319–2326 (2011). [CrossRef]
  5. H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131. [CrossRef]
  6. G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013). [CrossRef]
  7. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012). [CrossRef]
  8. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012). [CrossRef]
  9. L. Zhou, A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006). [CrossRef] [PubMed]
  10. L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013). [CrossRef] [PubMed]
  11. N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010). [CrossRef] [PubMed]
  12. L. Chen, Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012). [CrossRef] [PubMed]
  13. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010). [CrossRef] [PubMed]
  14. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84. [CrossRef]
  15. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236. [CrossRef]
  16. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  17. C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express 19(16), 15429–15437 (2011). [CrossRef] [PubMed]
  18. L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013). [CrossRef]
  19. M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010). [CrossRef] [PubMed]
  20. H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009). [CrossRef]
  21. H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012). [CrossRef] [PubMed]
  22. H. Chen, A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010). [CrossRef]
  23. H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)
  24. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).
  25. S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001). [CrossRef]
  26. A. Grinberg, S. Luryi, “Space-charge-limited current and capacitance in double-junction diodes,” J. Appl. Phys. 61(3), 1181–1189 (1987). [CrossRef]
  27. N. Harrick, “Optical spectrum of the semiconductor surface states from frustrated total internal reflections,” Phys. Rev. 125(4), 1165–1170 (1962). [CrossRef]
  28. G. Samoggia, A. Nucciotti, G. Chiarotti, “Optical detection of surface states in Ge,” Phys. Rev. 144(2), 749–751 (1966). [CrossRef]
  29. F. Allen, G. Gobeli, “Work function, photoelectric threshold, and surface states of atomically clean silicon,” Phys. Rev. 127(1), 150–158 (1962). [CrossRef]
  30. V. Bortolani, C. Calandra, A. Sghedoni, “Surface states in Si,” Phys. Lett. A 34(3), 193–194 (1971). [CrossRef]
  31. G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971). [CrossRef]
  32. T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008). [CrossRef] [PubMed]
  33. H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008). [CrossRef]
  34. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  35. J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008, Chap. 3).
  36. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited