OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2222–2227

Polarization anisotropic transmission through metallic Sierpinski-Carpet aperture array

Yuan Chen, Li Zhan, Jian Wu, and Tianmeng Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2222-2227 (2014)
http://dx.doi.org/10.1364/OE.22.002222


View Full Text Article

Enhanced HTML    Acrobat PDF (2886 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extraordinary optical transmission through rectangular Sierpinski -Carpet aperture array on an Ag film has been observed. Attributed to the fractal-featured rectangle array, it exhibits polarization dependence and dual-band transmission simultaneously. In addition, the incident angle invariance transmission displays within a certain angle range, which is quite different from ordinary rectangles. This report provides a way to achieve the polarization-manipulated multi-band transmission in infrared region.

© 2014 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Plasmonics

History
Original Manuscript: December 2, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 17, 2014
Published: January 27, 2014

Citation
Yuan Chen, Li Zhan, Jian Wu, and Tianmeng Wang, "Polarization anisotropic transmission through metallic Sierpinski-Carpet aperture array," Opt. Express 22, 2222-2227 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  3. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004). [CrossRef] [PubMed]
  4. Y. Qiu, L. Zhan, and Y. Xia, “Polarization-manipulated dual-band enhanced optical transmission through sub-wavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600106 (2013). [CrossRef]
  5. K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005). [CrossRef]
  6. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett.77(11), 1569–1571 (2000). [CrossRef]
  7. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000). [CrossRef]
  8. J. H. Kim and P. J. Moyer, “Transmission characteristics of metallic equilateral triangular nanohole arrays,” Appl. Phys. Lett.89(12), 121106 (2006). [CrossRef]
  9. E. C. Kinzel and X. F. Xu, “Extraordinary infrared transmission through a periodic bowtie aperture array,” Opt. Lett.35(7), 992–994 (2010). [CrossRef] [PubMed]
  10. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316–4318 (2004). [CrossRef]
  11. W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett.83(11), 2106–2108 (2003). [CrossRef]
  12. W. Wen, L. Zhou, B. Hou, C. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005). [CrossRef]
  13. Y. Qiu, X. Hu, L. Zhan, Q. Shen, and Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett.23(10), 630–632 (2011). [CrossRef]
  14. A. Degiron and T. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005). [CrossRef]
  15. Y.-W. Jiang, L. D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express17(4), 2631–2637 (2009). [CrossRef] [PubMed]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared,” Appl. Opt.22(7), 1099–1119 (1983). [CrossRef] [PubMed]
  17. A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004). [CrossRef]
  18. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006). [CrossRef] [PubMed]
  19. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  20. Y. Qiu, L. Zhan, X. Hu, S. Luo, and Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays32(5), 308–312 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited