OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2228–2235

Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO

Yongguang Zhao, Shidong Zhuang, Xiaodong Xu, Jun Xu, Haohai Yu, Zhengping Wang, and Xinguang Xu  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2228-2235 (2014)
http://dx.doi.org/10.1364/OE.22.002228


View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-wavelength emissions have been demonstrated in many disordered laser crystals. Improving the emission controllability is crucial for their practical applications. However, it is difficult because the closely adjacent laser components cannot be effectively adjusted by the traditional resonator design. In this paper, the anisotropy of laser emission in a monoclinic, disordered crystal Nd:LuYSiO5 (Nd:LYSO) is reported for the first time. By selecting crystal orientation, high power laser emission with different wavelengths and polarizations were obtained. For X-cut sample, 1076 nm single-wavelength laser output reached 7.56 W, which will be a useful light source for detecting carbonyl-hemoglobin and nitrite after frequency doubling. For Y- and Z-cut samples, 1076, 1079 nm dual-wavelength laser output reached 10.3 W and 7.61 W, with parallel and orthogonal polarizations, respectively, which are convenient to be used as the generation sources of 0.78 THz wave by type-I or type-II difference frequency. The output characteristic is well explained by a theoretical analysis on the stimulated emission cross-section. The present work reveals that the intrinsic anisotropy in disordered laser crystal can be utilized to elevate the emission controllability. Accordantly, the material’s application scopes can be extended.

© 2014 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3380) Materials : Laser materials
(300.6170) Spectroscopy : Spectra

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 4, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 16, 2014
Published: January 27, 2014

Citation
Yongguang Zhao, Shidong Zhuang, Xiaodong Xu, Jun Xu, Haohai Yu, Zhengping Wang, and Xinguang Xu, "Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO," Opt. Express 22, 2228-2235 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett.61(7), 746–748 (1992). [CrossRef]
  2. Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett.30(16), 2107–2109 (2005). [CrossRef] [PubMed]
  3. F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett.99(24), 241113 (2011). [CrossRef]
  4. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett.94(4), 041126 (2009). [CrossRef]
  5. H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010). [CrossRef] [PubMed]
  6. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express17(8), 6004–6009 (2009). [CrossRef] [PubMed]
  7. Y. F. Lü, P. Zhai, J. Xia, X. H. Fu, and S. T. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B29(9), 2352–2356 (2012).
  8. F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm,” Opt. Lett.37(14), 2817–2819 (2012). [CrossRef] [PubMed]
  9. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express20(5), 5644–5651 (2012). [CrossRef] [PubMed]
  10. A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Ton-celli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001). [CrossRef]
  11. K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. G. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011). [CrossRef] [PubMed]
  12. K. Wu, L. Z. Hao, H. H. Yu, Z. P. Wang, J. Y. Wang, and H. J. Zhang, “Thermal and laser properties of Nd:Lu₃Sc₁.₅Ga₃.₅O₁₂ for high power dual-wavelength laser,” Opt. Express20(7), 6944–6951 (2012). [CrossRef] [PubMed]
  13. Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B112(1), 55–60 (2013). [CrossRef]
  14. Y. Wang, W. J. Han, J. H. Liu, L. H. Xia, X. Mateos, V. Petrov, H. J. Zhang, and J. Y. Wang, “Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 cystal,” Acta. Phys. Sin.58(1), 278–284 (2009).
  15. A. Brenier, Y. Wu, J. Zhang, Y. Wu, and P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys.108(9), 093101 (2010). [CrossRef]
  16. A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B107(1), 59–65 (2012). [CrossRef]
  17. L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett.102(1), 011137 (2013). [CrossRef]
  18. S. Q. Sun, H. H. Yu, Y. C. Wang, H. J. Zhang, and J. Y. Wang, “Thermal, spectroscopic and laser characterization of monoclinic vanadate Nd:LaVO4crystal,” Opt. Express21(25), 31119–31129 (2013). [CrossRef]
  19. Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express16(11), 7997–8002 (2008). [CrossRef] [PubMed]
  20. S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, and G. Aka, “Singular topology of optical absorption in biaxial crystals,” Opt. Express17(22), 19868–19873 (2009). [CrossRef] [PubMed]
  21. Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Photonics Rev.7(6), 920–937 (2013). [CrossRef]
  22. A. M. Tkachuk, A. K. Przhevusskii, L. G. Morozova, A. V. Poletimova, M. V. Petrov, and A. M. Korovkin, “Nd3+ optical centers in lutecium, yttrium, and scandium silicate crystals and their spontaneous and stimulated emission,” Opt. Spectrosc.60(2), 176–181 (1986).
  23. T. Kimble, M. Chou, and B. H. T. Chai, “Scintillation Properties of LYSO Crystals,” IEEE Nucl. Sci. Symp. Conf. Record3(10–16), 1434–1437 (2002).
  24. D. W. Cooke, K. J. McClellan, B. L. Bennett, J. M. Roper, M. T. Whittaker, R. E. Muenchausen, and R. C. Sze, “Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5,” J. Appl. Phys.88(12), 7360–7362 (2000). [CrossRef]
  25. L. Qin, H. Li, S. Lu, D. Ding, and G. Ren, “Growth and characteristics of LYSO (Lu2(1-x-y)Y2xSiO5:Cey) scintillation crystals,” J. Cryst. Growth281(2–4), 518–524 (2005). [CrossRef]
  26. W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express14(15), 6681–6686 (2006). [CrossRef] [PubMed]
  27. L. Su, D. Zhang, H. Li, J. Du, Y. Xu, X. Liang, G. Zhao, and J. Xu, “Passively Q-switched Yb3+ laser with Yb3+-doped CaF2 crystal as saturable absorber,” Opt. Express15(5), 2375–2379 (2007). [CrossRef] [PubMed]
  28. B. K. Brickeen and E. Geathers, “Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO,” Opt. Express17(10), 8461–8466 (2009). [CrossRef] [PubMed]
  29. J. Liu, W. W. Wang, C. C. Liu, X. W. Fan, L. H. Zheng, L. B. Su, and J. Xu, “Efficient diode-pumped self-mode-locking Yb:LYSO laser,” Laser Phys. Lett.7(2), 104–107 (2010).
  30. D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, “Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO,” Laser Phys. Lett.7(11), 798–804 (2010). [CrossRef]
  31. L. J. Chen, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, S. D. Zhuang, L. Guo, Y. G. Zhao, and X. G. Xu, “Efficient dual-wavelength operation of Nd:LYSO laser by diode pumping aimed toward the absorption peak,” Chin. Opt. Lett.9(7), 071403 (2011). [CrossRef]
  32. S. D. Zhang, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, L. Guo, L. J. Chen, Y. G. Zhao, and X. G. Xu, “Contunuous-wave and passively Q-switched Nd:LYSO laser,” Laser Phys.21(4), 684–689 (2011). [CrossRef]
  33. Z. H. Cong, D. Y. Tang, W. De Tan, J. Zhang, C. W. Xu, D. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express19(5), 3984–3989 (2011). [CrossRef] [PubMed]
  34. Y. G. Zhao, X. L. Li, M. M. Xu, H. H. Yu, Y. Z. Wu, Z. P. Wang, X. P. Hao, and X. G. Xu, “Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber,” Opt. Express21(3), 3516–3522 (2013). [CrossRef] [PubMed]
  35. K. M. Yun, J. Y. Wang, Y. J. Wang, Z. W. Wei, X. H. Zhang, and L. B. Gao, “Rapid diagnosis of carbon monoxide poisoning by 4300 spectrophotometer,” Chin. J. Integr. Med. Cardio4(4), 292–293 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited