OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2247–2258

Guided mode resonance enabled ultra-compact Germanium photodetector for 1.55 μm detection

Alexander Yutong Zhu, Shiyang Zhu, and Guo-Qiang Lo  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2247-2258 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel technique of enhancing the photodetection capabilities of ultrathin Ge films for normally incident light at 1.55 μm through the guided mode resonance (GMR) phenomenon. Specifically, by suitably patterning the surface of a Ge thin film, it is possible to excite guided modes which are subsequently coupled to free space radiative modes, resulting in spectral resonances that possess locally enhanced near fields with a large spatial extent. Absorption is found to be enhanced by over an order of magnitude over a pristine Ge film of equal thickness. Furthermore, attenuation of incident light for such a structure occurs over very few grating periods, resulting in significantly enhanced theoretical 3 dB bandwidth-efficiency products of ~58 GHz. The nature of the enhancement mechanism also produces spectrally narrow resonances (FWHM ~30 nm) that are polarization sensitive and exhibit excellent angular tolerance. Finally, the proposed device architecture is fully compatible with existing Si infrastructure and current CMOS fabrication processes.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.1950) Optical devices : Diffraction gratings
(240.0310) Optics at surfaces : Thin films

ToC Category:

Original Manuscript: August 13, 2013
Manuscript Accepted: October 14, 2013
Published: January 28, 2014

Alexander Yutong Zhu, Shiyang Zhu, and Guo-Qiang Lo, "Guided mode resonance enabled ultra-compact Germanium photodetector for 1.55 μm detection," Opt. Express 22, 2247-2258 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2011).
  2. L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000). [CrossRef]
  3. J. Michel, J. F. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010). [CrossRef]
  4. L. Vivien, M. Rouvière, J. M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007). [CrossRef] [PubMed]
  5. K. W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. F. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. In Quan. Electron. 16, 106–113 (2010).
  6. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012). [CrossRef]
  7. M. S. Unlu, S. Strite, “Resonant-cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995). [CrossRef]
  8. Y. A. Akimov, W. S. Koh, K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  9. J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  10. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009). [CrossRef]
  11. C. L. Tan, A. Karar, K. Alameh, Y. T. Lee, “Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles,” Opt. Express 21(2), 1713–1725 (2013). [CrossRef] [PubMed]
  12. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  13. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006). [CrossRef] [PubMed]
  14. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  15. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  16. M. K. Emsley, O. Dosunmu, M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photon. Technol. Lett. 14(4), 519–521 (2002). [CrossRef]
  17. J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999). [CrossRef]
  18. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005). [CrossRef]
  19. X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012). [CrossRef]
  20. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006). [CrossRef]
  21. L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010). [CrossRef] [PubMed]
  22. T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006). [CrossRef]
  23. J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988). [CrossRef]
  24. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997). [CrossRef]
  25. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999). [CrossRef]
  26. G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991). [CrossRef]
  27. N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010). [CrossRef] [PubMed]
  28. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  29. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011). [CrossRef]
  30. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992). [CrossRef]
  31. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  32. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23(19), 1556–1558 (1998). [CrossRef] [PubMed]
  33. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009). [CrossRef] [PubMed]
  34. A. Szeghalmi, E. B. Kley, M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114(49), 21150–21157 (2010). [CrossRef]
  35. C. Y. Wei, S. J. Liu, D. G. Deng, J. Shen, J. D. Shao, Z. X. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31(9), 1223–1225 (2006). [CrossRef] [PubMed]
  36. P. R. Villeneuve, M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992). [CrossRef] [PubMed]
  37. Y. Kokubun, Lightwave Engineering (CRC Press, 2013).
  38. D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited