OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2259–2266

Continuous-wave terahertz system based on a dual-mode laser for real-time non-contact measurement of thickness and conductivity

Kiwon Moon, Namje Kim, Jun-Hwan Shin, Young-Jong Yoon, Sang-Pil Han, and Kyung Hyun Park  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2259-2266 (2014)
http://dx.doi.org/10.1364/OE.22.002259


View Full Text Article

Enhanced HTML    Acrobat PDF (1831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz (THz) waves have been exploited for the non-contact measurements of thickness and refractive index, which has enormous industrial applicability. In this work, we demonstrate a 1.3-μm dual-mode laser (DML)-based continuous-wave THz system for the real-time measurement of a commercial indium-tin-oxide (ITO)-coated glass. The system is compact, cost-effective, and capable of performing broadband measurement within a second at the setting resolution of 1 GHz. The thickness of the glass and the sheet conductivity of the ITO film were successfully measured, and the measurements agree well with those of broadband pulse-based time domain spectroscopy and Hall measurement results.

© 2014 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Terahertz optics

History
Original Manuscript: September 23, 2013
Revised Manuscript: December 10, 2013
Manuscript Accepted: January 22, 2014
Published: January 28, 2014

Citation
Kiwon Moon, Namje Kim, Jun-Hwan Shin, Young-Jong Yoon, Sang-Pil Han, and Kyung Hyun Park, "Continuous-wave terahertz system based on a dual-mode laser for real-time non-contact measurement of thickness and conductivity," Opt. Express 22, 2259-2266 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. U. Jepsen, D. G. Cooke, M. Koch, “Terahertz Spectroscopy and Imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011). [CrossRef]
  2. L. Duvillaret, F. Garet, J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999). [CrossRef] [PubMed]
  3. S. Wang, X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys. 37(4), R1–R36 (2004). [CrossRef]
  4. A. J. Fitzgerald, B. E. Cole, P. F. Taday, “Nondestructive Analysis of Tablet Coating Thicknesses Using Terahertz Pulsed Imaging,” J. Pharm. Sci. 94(1), 177–183 (2005). [CrossRef] [PubMed]
  5. T. Yasui, T. Yasuda, K. Sawanaka, T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005). [CrossRef] [PubMed]
  6. J. Pearce, H. Choi, D. M. Mittleman, J. White, D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005). [CrossRef] [PubMed]
  7. C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-L. Pan, “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010). [CrossRef]
  8. C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, C.-L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure,” Opt. Express 20(S4Suppl 4), A441–A451 (2012). [CrossRef] [PubMed]
  9. D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16–18 (1997). [CrossRef]
  10. S. Verghese, K. A. McIntosh, E. R. Brown, “Highly Tunable Fiber-Coupled Photomixers with Coherent Terahertz Output Power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997). [CrossRef]
  11. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998). [CrossRef]
  12. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, M. Schell, “Continuous wave terahertz systems exploiting 15 µm telecom technologies,” Opt. Express 17(17), 15001–15007 (2009). [CrossRef] [PubMed]
  13. G. Mouret, S. Matton, R. Bocquet, D. Bigourd, F. Hindle, A. Cuisset, J. F. Lampin, K. Blary, D. Lippens, “THz media characterization by means of coherent homodyne detection, results and potential applications,” Appl. Phys. B 89(2-3), 395–399 (2007). [CrossRef]
  14. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010). [CrossRef]
  15. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17(16), 13851–13859 (2009). [CrossRef] [PubMed]
  16. N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett. 10(8), 085805 (2013). [CrossRef]
  17. N. Kim, Y. A. Leem, H. Ko, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, K. H. Park, “Widely tunable 1.55-μm detuned dual-mode laser diode for compact continuous-wave THz emitter,” ETRI J. 33(5), 810–813 (2011). [CrossRef]
  18. R. Wilk, F. Breitfeld, M. Mikulics, M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008). [CrossRef] [PubMed]
  19. M. Scheller, K. Baaske, M. Koch, “Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination,” Appl. Phys. Lett. 96(15), 151112 (2010). [CrossRef]
  20. H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, K. H. Park, “Simple and cost-effective thickness measurement terahertz system based on a compact 1.55 μm λ/4 phase-shifted dual-mode laser,” Opt. Express 20(23), 25990–25999 (2012). [CrossRef] [PubMed]
  21. A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett. 29(6), 575–577 (2004). [CrossRef] [PubMed]
  22. M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20(23), 25654–25661 (2012). [CrossRef] [PubMed]
  23. J. Renaudier, G.-H. Duan, J.-G. Provost, H. Debregeas-Sillard, P. Gallion, “Phase correlation between longitudinal modes in semiconductor self-pulsating DBR lasers,” IEEE Photon. Technol. Lett. 17(4), 741–743 (2005). [CrossRef]
  24. T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980). [CrossRef]
  25. S. L. Chuang, Physics of Optoelectronic Devices, (John Wiley & Sons, Inc., 1995), Chap. 5.
  26. P. U. Jepsen, R. H. Jacobsen, S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996). [CrossRef]
  27. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005). [CrossRef]
  28. M. M. Gitin, F. W. Wise, G. Arjavalingam, Y. Pastol, R. C. Compton, “Broad-Band Characterization of Millimeter-Wave Log-Periodic Antennas by Photoconductive Sampling,” IEEE Trans. Antenn. Propag. 42(3), 335–339 (1994). [CrossRef]
  29. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013). [CrossRef] [PubMed]
  30. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, A. J. Seeds, “A high-responsivity, broadband waveguide uni-traveling carrier photodiode,” Proc. SPIE 6194, 61940C (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MP4 (878 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited