OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2289–2298

Low-loss flexible bilayer metamaterials in THz regime

Jeong Min Woo, Dongju Kim, Sajid Hussain, and Jae-Hyung Jang  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2289-2298 (2014)
http://dx.doi.org/10.1364/OE.22.002289


View Full Text Article

Enhanced HTML    Acrobat PDF (7644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low insertion-loss single-layer and bilayer metamaterial filters in terahertz (THz) frequency regime were demonstrated on top of low cost flexible Scotch tape by utilizing pattern transfer method. The transmittance of the flexible 51-μm-thick Scotch tape was found out to be higher than 0.85 in the range of 0.2 to 3 THz, which is excellent for the substrate materials for THz applications. Free standing filters exhibited record low insertion loss of 0.6 dB and band rejection ratio as high as 30 dB. The resonance reflection characteristics of the bilayer filters were maintained when they were attached on top of curved PET bottle or metallic surfaces, providing promising application in THz identifications.

© 2014 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Metamaterials

History
Original Manuscript: October 16, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 18, 2014
Published: January 28, 2014

Citation
Jeong Min Woo, Dongju Kim, Sajid Hussain, and Jae-Hyung Jang, "Low-loss flexible bilayer metamaterials in THz regime," Opt. Express 22, 2289-2298 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2289


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. B. Ferguson, X.-C. Zhang, “Materials for Terahertz Science and Technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef] [PubMed]
  3. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005). [CrossRef]
  4. T. W. Crowe, T. Globus, D. L. Woolard, J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philos Trans A Math Phys Eng Sci 362(1815), 365–377, discussion 374–377 (2004). [CrossRef] [PubMed]
  5. A. G. Davies, E. H. Linfield, M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47(21), 3679–3689 (2002). [CrossRef] [PubMed]
  6. S. Hussain, J. M. Woo, J.-H. Hyung, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012). [CrossRef]
  7. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterials solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  8. H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008). [CrossRef]
  9. C. Sirtori, “Applied physics: bridge for the terahertz gap,” Nature 417(6885), 132–133 (2002). [CrossRef] [PubMed]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  11. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductor and enhanced nonlinear phenomena,” IEEE Trans. 47(11), 2075–2084 (1999).
  14. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  15. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  16. F. Baumann, W. A. Bailey, A. Naweed, W. D. Goodhue, A. J. Gatesman, “Wet-etch optimization of free-standing terahertz frequency-selective structures,” Opt. Lett. 28(11), 938–940 (2003). [CrossRef] [PubMed]
  17. R. D. Rawcliffe, C. M. Randall, “Metal mesh interference filters for the far infrared,” Appl. Opt. 6(8), 1353–1358 (1967). [CrossRef] [PubMed]
  18. W. X. Tang, Q. Cheng, T. J. Cui, “Electric and magnetic response from metamaterials unit cells at terahertz,” Terahertz Sci. Technol. 2(1), 23–30 (2009).
  19. A. F. Starr, P. M. Rye, D. R. Smith, S. Nemat-Nasser, “Fabrication and characterization of a negative-refractive-index composite metamaterial,” Phys. Rev. B 70(11), 113102 (2004). [CrossRef]
  20. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011). [CrossRef] [PubMed]
  21. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011). [CrossRef] [PubMed]
  22. J. J. P. Valeton, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, J. Perelaer, U. S. Schubert, G. P. Crawfort, P. J. Smith, “Room temperature preparation of conductive silver features using spin-coating and inkjet printing,” J. Mater. Chem. 20(3), 543–546 (2009). [CrossRef]
  23. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012). [CrossRef]
  24. H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, “Metamaterial Silk Composites at Terahertz Frequencies,” Adv. Mater. 22(32), 3527–3531 (2010). [CrossRef] [PubMed]
  25. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater. 23(28), 3197–3201 (2011). [CrossRef] [PubMed]
  26. Y. Ma, A. Khalid, T. D. Drysdale, D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009). [CrossRef] [PubMed]
  27. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54(3-4), 229–245 (2000). [CrossRef]
  28. S. Inoue, S. Utsunomiya, T. Saeki, T. Shimoda, “Surface-Free Technology by Laser Annealing (SUFTLA) and its application to poly-si TFT-LCDs on plastic film with integrated drivers,” IEEE Trans. 49(8), 1353–1360 (2002). [CrossRef]
  29. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010). [CrossRef] [PubMed]
  30. Y. Yang, Y. Hwang, H. A. Cho, J.-H. Song, S.-J. Park, J. A. Rogers, H. C. Ko, “Arrays of silicon micro/nanostructures formed in suspended configurations for deterministic assembly using flat and roller-type stamps,” Small 7(4), 484–491 (2011). [CrossRef] [PubMed]
  31. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  32. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, D. Abbott, “T-ray Sensing and Imaging,” Proc. IEEE 95(8), 1528–1558 (2007). [CrossRef]
  33. M. Naftaly, R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007). [CrossRef]
  34. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008). [CrossRef] [PubMed]
  35. A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylo, W. Zhang, J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2(1), 15–22 (2009).
  36. K. Finkenzeller, RFID Handbook, 2nd ed. (John Wiley, 2003), Chap. 2.
  37. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited