OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2337–2347

Design of highly efficient metallo-dielectric patch antennas for single-photon emission

F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2337-2347 (2014)
http://dx.doi.org/10.1364/OE.22.002337


View Full Text Article

Enhanced HTML    Acrobat PDF (3065 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantum emitters such as NV-centers or quantum dots can be used as single-photon sources. To improve their performance, they can be coupled to microcavities or nano-antennas. Plasmonic antennas offer an appealing solution as they can be used with broadband emitters. When properly designed, these antennas funnel light into useful modes, increasing the emission rate and the collection of single-photons. Yet, their inherent metallic losses are responsible for very low radiative efficiencies. Here, we introduce a new design of directional, metallo-dielectric, optical antennas with a Purcell factor of 150, a total efficiency of 74% and a collection efficiency of emitted photons of 99%.

© 2014 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(270.0270) Quantum optics : Quantum optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: October 28, 2013
Revised Manuscript: December 23, 2013
Manuscript Accepted: January 2, 2014
Published: January 28, 2014

Citation
F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, "Design of highly efficient metallo-dielectric patch antennas for single-photon emission," Opt. Express 22, 2337-2347 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Pohl, “Near-field optics: comeback of light in microscopy,” Solid State Phenomena, 63–64, 251–256 (1998). [CrossRef]
  2. D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-Field Optics - Principles and Applications: The Second Asia-Pacific Workshop on Near-Field Optics, X. Zhu and M. Ohtsu, eds. (World Scientific, 2000), pp. 9–21. [CrossRef]
  3. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  4. J.-J. Greffet, “Nanoantennas for light emission,” Science308, 1561 (2005). [CrossRef] [PubMed]
  5. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  6. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332, 702–704 (2011). [CrossRef] [PubMed]
  7. N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonics circuits,” IEEE J. Sel. Top. Quantum Electron.18, 1781–1791 (2012). [CrossRef]
  8. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012). [CrossRef] [PubMed]
  9. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys.68, 1129 (2005). [CrossRef]
  10. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012). [CrossRef] [PubMed]
  11. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano4, 3390–3396 (2010). [CrossRef] [PubMed]
  12. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef] [PubMed]
  13. J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9, 1189–1195 (2009). [CrossRef] [PubMed]
  14. I. S. Maksymov, M. Besbes, J.-P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett.105, 180502 (2010). [CrossRef]
  15. S. Derom, R. Vincent, A. Bouhelier, and G. Colas des Francs, “Resonance quality, radiative/ohmic losses and modal volume of Mie plasmons,” Europhys. Lett.98, 47008 (2012). [CrossRef]
  16. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 226803 (2012). [CrossRef] [PubMed]
  17. X.-W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012). [CrossRef] [PubMed]
  18. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single-photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun.3, 962 (2012). [CrossRef]
  19. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single-photon and single-plasmon sources,” Nano Lett.9, 4228–4233 (2009). [CrossRef] [PubMed]
  20. R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett.104, 026802 (2010). [CrossRef] [PubMed]
  21. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett.13, 1516–1521 (2013). [PubMed]
  22. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007). [CrossRef]
  23. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008). [CrossRef]
  24. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” New J. Phys.10, 105005 (2008). [CrossRef]
  25. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  26. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics4, 174–177 (2010). [CrossRef]
  27. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2010). [CrossRef]
  28. X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% Efficiency in collecting photons from a single emitter,” Opt. Lett.36, 3545–3547 (2011). [CrossRef] [PubMed]
  29. T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11, 706–711 (2011). [CrossRef] [PubMed]
  30. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express20, 20376–20386 (2012). [CrossRef] [PubMed]
  31. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Burlu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond silver aperture,” Nat. Photonics5, 738–743 (2011). [CrossRef]
  32. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195 (1984). [CrossRef]
  33. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B78, 153111 (2008). [CrossRef]
  34. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114, 7269–7273 (2010). [CrossRef]
  35. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  36. A. F. Koenderink, “On the use of purcell factors for plasmon antennas,” Opt. Lett.35, 4208–4210 (2010). [CrossRef] [PubMed]
  37. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett.110, 237401 (2013). [CrossRef]
  38. J. H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan, 1975).
  39. A. Armaroli, A. Morand, P. Benech, G. Bellanca, and S. Trillo, “Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method,” J. Opt. Soc. Am. A25, 667–675 (2008). [CrossRef]
  40. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  41. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. total radiated power,” J. Opt. Soc. Am. A67, 1607–1615 (1977).
  42. H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett.87, 031102 (2005). [CrossRef]
  43. A. C. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon enhanced emission from optically-doped MOS light sources,” Opt. Express17, 185–192 (2009). [CrossRef] [PubMed]
  44. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express17, 7479–7490 (2009). [CrossRef] [PubMed]
  45. R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63, 1589–1595 (1975). [CrossRef]
  46. J. E. Sipe, “New green-function formalism for surface optics,” J. Opt. Soc. Am. B4, 481–489 (1987). [CrossRef]
  47. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A14, 91–104 (1997). [CrossRef]
  48. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - A review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Mill.4, 230–247 (1994).
  49. G. N. Malheiros-Silveira, G. S. Wiederhecker, and H. E. Hernandez-Figueroa, “Dielectric resonator antenna for applications in nanophotonics,” Opt. Express21, 1234–1239 (2013). [CrossRef] [PubMed]
  50. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited