OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2376–2385

Waveguide-coupled photonic crystal cavity for quantum dot spin readout

R. J. Coles, N. Prtljaga, B. Royall, I. J. Luxmoore, A. M. Fox, and M. S. Skolnick  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2376-2385 (2014)
http://dx.doi.org/10.1364/OE.22.002376


View Full Text Article

Enhanced HTML    Acrobat PDF (3186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a waveguide-coupled photonic crystal H1 cavity structure in which the orthogonal dipole modes couple to spatially separated photonic crystal waveguides. Coupling of each cavity mode to its respective waveguide with equal efficiency is achieved by adjusting the position and orientation of the waveguides. The behavior of the optimized device is experimentally verified for where the cavity mode splitting is larger and smaller than the cavity mode linewidth. In both cases, coupled Q-factors up to 1600 and contrast ratios up to 10 are achieved. This design may allow for spin state readout of a self-assembled quantum dot positioned at the cavity center or function as an ultra-fast optical switch operating at the single photon level.

© 2014 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: October 30, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 12, 2013
Published: January 28, 2014

Citation
R. J. Coles, N. Prtljaga, B. Royall, I. J. Luxmoore, A. M. Fox, and M. S. Skolnick, "Waveguide-coupled photonic crystal cavity for quantum dot spin readout," Opt. Express 22, 2376-2385 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. O’Brien, J. Akira Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009). [CrossRef]
  2. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett.93, 040503 (2004). [CrossRef] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef]
  4. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A57, 120–126 (1998). [CrossRef]
  5. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett.87, 157401 (2001). [CrossRef] [PubMed]
  6. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science282, 1473–1476 (1998). [CrossRef] [PubMed]
  7. D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik48, 771–783 (2000). [CrossRef]
  8. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–430 (2012). [CrossRef]
  9. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012). [CrossRef]
  10. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett.110, 037402 (2013). [CrossRef] [PubMed]
  11. A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999). [CrossRef]
  12. A. C. T. Thijssen, M. J. Cryan, J. G. Rarity, and R. Oulton, “Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities,” Opt. Express20, 22412–22428 (2012). [CrossRef] [PubMed]
  13. H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express20, 28292–29300 (2012). [CrossRef] [PubMed]
  14. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett.87, 163107 (2005). [CrossRef]
  15. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009). [CrossRef]
  16. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009). [CrossRef]
  17. G.-H. Kim, Y.-H. Lee, A. Shinya, and M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Opt. Express12, 6624–6631 (2004). [CrossRef] [PubMed]
  18. Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101, 251113 (2012). [CrossRef]
  19. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  20. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007). [CrossRef]
  21. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87, 1–4 (2001).
  22. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90, 073102 (2007). [CrossRef]
  23. A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett.89, 101102 (2006). [CrossRef]
  24. L. J. Martinez, A. Garcia-Martin, and P. A. Postigo, “Coupling between waveguides and cavities in 2D photonic crystals: the role of mode symmetry,” in Microtechnologies for the New Millennium 2005,, G. Badenes, D. Abbott, and A. Serpenguzel, eds. (International Society for Optics and Photonics, 2005), pp. 879–884.
  25. A. Schwagmann, S. Kalliakos, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “In-plane single-photon emission from a L3 cavity coupled to a photonic crystal waveguide,” Opt. Express20, 28614–28624 (2012). [CrossRef] [PubMed]
  26. A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express19, 5670–5675 (2011). [CrossRef] [PubMed]
  27. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys.40, 2666–2670 (2007). [CrossRef]
  28. N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101, 051116 (2012). [CrossRef]
  29. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express13, 5064–5073 (2005). [CrossRef] [PubMed]
  30. S. S. Johnson and J. J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 363–376 (2001).
  31. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express16, 12154–12162 (2008). [CrossRef] [PubMed]
  32. F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum.81, 093705 (2010). [CrossRef] [PubMed]
  33. I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011). [CrossRef]
  34. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012). [CrossRef]
  35. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6, 56–61 (2011). [CrossRef]
  36. J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, and M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett.102, 181108 (2013). [CrossRef]
  37. S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, and A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics4, 545–548 (2010). [CrossRef]
  38. A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104, 1–4 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited