OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2423–2428

Wavelength-switchable mode-locked Yb:LuAG laser between 1031 nm and 1046 nm

Weiyang Ge, Hanxiao Liang, Jie Ma, Guoqiang Xie, Wenlan Gao, Peng Yuan, Liejia Qian, Xiaodong Xu, and Jun Xu  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2423-2428 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrated a wavelength switchable passively mode-locked Yb:LuAG laser. The mode locked laser wavelength could be switched between 1031 nm and 1046 nm by a slit. With a coupler of 2% transmission, mode locked pulses with pulse duration of 1.15 ps and average output power of 1.3 W were generated at 1031 nm. By simply translating the slit position, 1046-nm mode locked pulses were generated with pulse duration of 252 fs and average output power of 676mW. With the output coupler of 8% transmission, higher average output power of 2.2 W was generated at 1031 nm with pulse duration of 1.8 ps, which is the highest average output power ever reported for Yb:LuAG mode-locked lasers.

© 2014 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 14, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: December 19, 2013
Published: January 28, 2014

Weiyang Ge, Hanxiao Liang, Jie Ma, Guoqiang Xie, Wenlan Gao, Peng Yuan, Liejia Qian, Xiaodong Xu, and Jun Xu, "Wavelength-switchable mode-locked Yb:LuAG laser between 1031 nm and 1046 nm," Opt. Express 22, 2423-2428 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719–2721 (2006). [CrossRef] [PubMed]
  2. G. Paunescu, J. Hein, R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B 79(5), 555–558 (2004). [CrossRef]
  3. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers,” Opt. Lett. 30(23), 3234–3236 (2005). [CrossRef] [PubMed]
  4. J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, F. G. Yang, “Generation of 244-fs pulse at 1044.7 nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8(1), 24–27 (2011). [CrossRef]
  5. A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. H. Liu, H. J. Zhang, J. Y. Wang, U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett. 36(22), 4425–4427 (2011). [CrossRef] [PubMed]
  6. B. B. Zhou, Z. Y. Wei, Y. W. Zou, Y. D. Zhang, X. Zhong, G. L. Bourdet, J. L. Wang, “High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser,” Opt. Lett. 35(3), 288–290 (2010). [CrossRef] [PubMed]
  7. S. Uemura, K. Torizuka, “Sub-40-fs Pulses from a Diode-Pumped Kerr-Lens Mode-Locked Yb-Doped Yttrium Aluminum Garnet Laser,” Jpn. J. Appl. Phys. 50, 010201 (2011). [CrossRef]
  8. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Rodenas, D. Jaque, A. Eganyan, A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006). [CrossRef]
  9. M. E. Wieser, T. B. Coplen, “Atomic weights of the elements 2009 (IUPAC Technical Report),” Pure Appl. Chem. 83(2), 359–396 (2011). [CrossRef]
  10. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010). [CrossRef] [PubMed]
  11. T. Kasamatsu, H. Sekita, Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt. 38(24), 5149–5153 (1999). [CrossRef] [PubMed]
  12. J. Dong, K. Ueda, A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett. 7(10), 726–733 (2010). [CrossRef]
  13. C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012). [CrossRef]
  14. J. P. He, X. Y. Liang, J. F. Li, H. B. Yu, X. D. Xu, Z. W. Zhao, J. Xu, Z. Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express 17(14), 11537–11542 (2009). [CrossRef] [PubMed]
  15. H. Nakao, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012). [CrossRef] [PubMed]
  16. H. Yoshioka, S. Nakamura, T. Ogawa, S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010). [CrossRef] [PubMed]
  17. Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, J. H. Zheng, L. B. Su, J. Xu, “Dual-wavelength mode-locked Yb: LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012). [CrossRef]
  18. W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, Y. F. Chen, “High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb: YAG laser,” Laser Phys. 23(7), 075803 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited