OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2451–2458

Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber

F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2451-2458 (2014)
http://dx.doi.org/10.1364/OE.22.002451


View Full Text Article

Enhanced HTML    Acrobat PDF (1491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose, by means of numerical simulations, a simple method to design a non-uniform standard single mode fiber to generate spectral broadening in the form of “ad-hoc” chosen peaks from dispersive waves. The controlled multi-peak generation is possible by an on/off switch of Cherenkov radiation, achieved by tailoring the fiber dispersion when decreasing the cladding diameter by segments. The interplay between the fiber dispersion and the soliton self-frequency shift results in discrete peaks of efficiently emitted Cherenkov radiation from low order solitons, despite the small amount of energy contained in a pulse. These spectra are useful for applications that demand low power bell-shaped pulses at specific carrier wavelengths.

© 2014 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics

History
Original Manuscript: December 2, 2013
Manuscript Accepted: January 15, 2014
Published: January 28, 2014

Citation
F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, "Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber," Opt. Express 22, 2451-2458 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  2. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys.82, 1287–1299 (2010). [CrossRef]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature424, 511–515 (2003). [CrossRef] [PubMed]
  4. P. Russell, “Photonic crystal fibers,” Science299, 358–362 (2003). [CrossRef] [PubMed]
  5. J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003). [CrossRef] [PubMed]
  6. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B19, 2148–2155 (2002). [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25, 1415–1417 (2000). [CrossRef]
  8. S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express.20, 10635–10645 (2012). [CrossRef]
  9. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express18, 16640–16645 (2010). [CrossRef] [PubMed]
  10. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B26, 2064–2071 (2009). [CrossRef]
  11. C. Cheng, Y. Wang, Y. Ou, and Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol.44, 954–959 (2012). [CrossRef]
  12. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1, 653–657 (2007). [CrossRef]
  13. G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.
  14. A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE7839, 78390W (2010). [CrossRef]
  15. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. Martjn de Sterke, and B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express19, 17766–17773 (2011). [CrossRef] [PubMed]
  16. N. Akhmediev and M Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  17. C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett.34, 2096–2098 (2009). [CrossRef] [PubMed]
  18. R. Zhang, X. Zhang, D. Meiser, and H. Giessen, “Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber,” Opt. Express12, 5840–5849 (2004). [CrossRef] [PubMed]
  19. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett.30, 1980–1982 (2005). [CrossRef] [PubMed]
  20. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E70, 016615 (2004). [CrossRef]
  21. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express15, 13203–13211 (2007).
  22. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett.34, 115–117 (2009). [CrossRef] [PubMed]
  23. S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express18, 20151–20163 (2010). [CrossRef] [PubMed]
  24. C. Milián, A. Ferrando, and D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B29, 589–593 (2012). [CrossRef]
  25. R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, “Group velocity dispersion of tapered fibers immersed in different liquids,” Opt. Express12, 1700–1707 (2004). [CrossRef] [PubMed]
  26. H. J. Kbashi, “Fabrication of submicron-diameter and taper fibers using chemical etching,” J. Mater. Sci. Technol.28, 308–312 (2012). [CrossRef]
  27. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17, 19486–19500 (2009). [CrossRef] [PubMed]
  28. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia2, 9–25 (2000). [CrossRef] [PubMed]
  29. E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt.16, 096014 (2011). [CrossRef]
  30. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol.4, 710–711 (2009). [CrossRef] [PubMed]
  31. Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt.18, 101318 (2013). [CrossRef] [PubMed]
  32. J. M. Huntley, T. Widjanarko, and P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol.21, 075304 (2010). [CrossRef]
  33. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  34. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34, 3577–3579 (2009). [CrossRef] [PubMed]
  35. C. Milián and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett.98, 111104 (2011). [CrossRef]
  36. www.optiwave.com .
  37. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E72, 016619 (2005). [CrossRef]
  38. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci.100, 321–342 (2011).
  39. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett.11, 662–664 (1986). [CrossRef] [PubMed]
  40. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express16, 4858–4865 (2008). [CrossRef] [PubMed]
  41. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A76, 053803 (2007). [CrossRef]
  42. B. Metzger, A. Steinmann, F. Hoos, S. Pricking, and H. Giessen, “Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses,” Opt. Lett.35, 3961–3963 (2010). [CrossRef] [PubMed]
  43. J. N. Farmer and C. I. Miyake, “Method and apparatus for optical coherence tomography with a multispectral laser source,” U.S. Patent 6,538,817 filed October 17, 2000, and issued March 25, 2003.
  44. J. M. Huntley, P. D. Ruiz, and T. Widjanarko, “Apparatus for the absolute measurement of two dimensional optical path distributions using interferometry,” U.S. Patent 2,011,010,092 filed July 20, 2010, and issued July 12, 2012.
  45. N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum.81, 093706 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited