OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2483–2488

Fabrication of highly stable silica coated ZnCuInS nanocrystals monolayer via layer by layer deposition for LED application

Wonkeun Chung, Hyunchul Jung, Chang Hun Lee, and Sung Hyun Kim  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2483-2488 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, non-toxic and highly stable silica coated ZnCuInS NCs were synthesized by a reverse microemulsion method. The single NCs were uniformly encapsulated in a silica shell with a diameter of ~30nm. Although hydrolyzed TEOS caused a QY reduction, and a 12.5nm red shift occurred after silica coating, the photo and thermal stabilities were extremely improved. For LED application, the silica coated ZnCuInS NCs phosphor layer was arrayed on the InGaN LED surface by layer-by-layer deposition utilizing electrostatic attraction. When the ZnCuInS/SiO2 NCs single monolayer was fabricated, 6.73% high color conversion efficiency was achieved.

© 2014 Optical Society of America

OCIS Codes
(160.6030) Materials : Silica
(160.4236) Materials : Nanomaterials
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Thin Films

Original Manuscript: July 25, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: January 2, 2014
Published: January 29, 2014

Wonkeun Chung, Hyunchul Jung, Chang Hun Lee, and Sung Hyun Kim, "Fabrication of highly stable silica coated ZnCuInS nanocrystals monolayer via layer by layer deposition for LED application," Opt. Express 22, 2483-2488 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004). [CrossRef] [PubMed]
  2. H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, A. Eychmüller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6(6), 632–647 (2011). [CrossRef]
  3. S. Coe, W. K. Woo, M. Bawendi, V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420(6917), 800–803 (2002). [CrossRef] [PubMed]
  4. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett. 7(8), 2196–2200 (2007). [CrossRef] [PubMed]
  5. J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012). [CrossRef] [PubMed]
  6. J. M. Yang, H. Yang, L. Lin, “Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells,” ACS Nano 5(6), 5067–5071 (2011). [CrossRef] [PubMed]
  7. H. Chen, C. Hsu, H. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18(1), 193–195 (2006). [CrossRef]
  8. S. Nizamoglu, T. Ozel, E. Sari, H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18(6), 065709 (2007). [CrossRef]
  9. H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology 19(14), 145202 (2008). [CrossRef] [PubMed]
  10. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010). [CrossRef] [PubMed]
  11. R. Xie, M. Rutherford, X. Peng, “Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors,” J. Am. Chem. Soc. 131(15), 5691–5697 (2009). [CrossRef] [PubMed]
  12. J. Park, S. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem. 21(11), 3745–3750 (2011). [CrossRef]
  13. J. Zhang, R. Xie, W. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitter,” Chem. Mater. 23(14), 3357–3361 (2011). [CrossRef]
  14. D. Nam, W. Song, H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011). [CrossRef]
  15. S. Castro, S. Bailey, R. Raffaelle, K. Banger, A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B 108(33), 12429–12435 (2004). [CrossRef]
  16. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “Inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008). [CrossRef] [PubMed]
  17. W. Song, H. Yang, “Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots,” Chem. Mater. 24(10), 1961–1967 (2012). [CrossRef]
  18. W. Song, H. Yang, “Fabrication of white light-emitting diodes based on solvotherrmally synthesized copper indium sulfide quantum dots as color converters,” Appl. Phys. Lett. 100(18), 183104 (2012). [CrossRef]
  19. W. Chung, H. Jung, C. H. Lee, S. H. Kim, “Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped CuInS2 nanocrystals,” Opt. Express 20(22), 25071–25076 (2012). [CrossRef] [PubMed]
  20. B. Chen, Q. Zhou, J. Li, F. Zhang, R. Liu, H. Zhong, B. Zou, “Red emissive CuInS2-based nanocrystals: a potential phosphor for warm white light-emitting diodes,” Opt. Express 21(8), 10105–10110 (2013). [CrossRef] [PubMed]
  21. M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6(7), 1396–1400 (2006). [CrossRef] [PubMed]
  22. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997). [CrossRef]
  23. Y. Lvov, K. Ariga, M. Onda, I. Ichinose, T. Kunitake, “Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions,” Langmuir 13(23), 6195–6203 (1997). [CrossRef]
  24. A. Rogach, D. Koktysh, M. Harrison, N. Kotov, “Layer-by-Layer assembled films of HgTe nanocrystals with strong infrared emission,” Chem. Mater. 12(6), 1526–1528 (2000). [CrossRef]
  25. S. Jaffar, K. Nam, A. Khademhosseini, J. Xing, R. Langer, A. Belcher, “Layer-by-Layer surface modification and patterned electrostatic deposition of quantum dots,” Nano Lett. 4(8), 1421–1425 (2004). [CrossRef]
  26. D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005). [CrossRef] [PubMed]
  27. M. Darbandi, G. Urban, M. Krüger, “Bright luminescent, colloidal stable silica coated CdSe/ZnS nanocomposite by an in situ, one-pot surface functionalization,” J. Colloid Interface Sci. 365(1), 41–45 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited