OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2545–2552

Tilted MMI crossings based on silicon wire waveguide

Sang-Hun Kim, Guangwei Cong, Hitoshi Kawashima, Toshifumi Hasama, and Hiroshi Ishikawa  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2545-2552 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Waveguide crossings employing tilted MMI structures on silicon wire waveguide are proposed and demonstrated. Intersecting angle of the two MMI waveguides is optimized for low crosstalk. The optimization is carried out with input polarizations specified. On the fabricated MMI crossings, crosstalk lower than −38 dB in the C-band was experimentally confirmed. A novel polarization-insensitive crossing based on a diversity circuit was fabricated. Crosstalk lower than −30 dB in the C-band is demonstrated.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: December 2, 2013
Revised Manuscript: January 18, 2014
Manuscript Accepted: January 21, 2014
Published: January 29, 2014

Sang-Hun Kim, Guangwei Cong, Hitoshi Kawashima, Toshifumi Hasama, and Hiroshi Ishikawa, "Tilted MMI crossings based on silicon wire waveguide," Opt. Express 22, 2545-2552 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Fukazawa, T. Hirano, F. Ohno, T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004). [CrossRef]
  2. F. Shinobu, Y. Arita, T. Baba, “Low-loss simple waveguide intersection in silicon photonics,” Electron. Lett. 46(16), 1149–1150 (2010). [CrossRef]
  3. W. Bogaerts, P. Dumon, D. V. Thourhout, R. Baets, “Low-loss, low-cross-talk waveguide crossings for silicon-on-insulator on nanophotonic waveguides,” Opt. Lett. 32(19), 2801–2803 (2007).
  4. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on insuluator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  5. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett. 34(18), 2760–2762 (2009). [CrossRef] [PubMed]
  6. D. Tanaka, Y. Ikuma, H. Tsuda, “Low-loss, small crosstalk offset crossing structure for large-scale planar lightwave circuits,” IEICE Electron. Express 6(7), 407–411 (2009). [CrossRef]
  7. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010). [CrossRef] [PubMed]
  8. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010). [CrossRef] [PubMed]
  9. Y. Wakayama, T. Kita, H. Yamada, “Optical crossing and integration using Si-Wire/silica waveguides,” Jpn. J. Appl. Phys. 50(4), 201–204 (2011). [CrossRef]
  10. A. V. Tsarev, “Efficient silicon wire waveguide crossing with negligible loss and crosstalk,” Opt. Express 19(15), 13732–13737 (2011). [CrossRef] [PubMed]
  11. A. M. Jones, C. T. DeRose, A. L. Lentine, D. C. Trotter, A. L. Starbuck, R. A. Norwood, “Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks,” Opt. Express 21(10), 12002–12013 (2013). [CrossRef] [PubMed]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  13. H. Chen, A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photonics Technol. Lett. 18(21), 2260–2262 (2006). [CrossRef]
  14. F. Xu, A. W. Poon, “Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings,” Opt. Express 16(12), 8649–8657 (2008). [CrossRef] [PubMed]
  15. C.-H. Chen, C.-H. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46(11), 1656–1661 (2010). [CrossRef]
  16. Y. Zhang, S. Yang, A. E.-J. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A CMOS-compatible, and low-crosstalk silicon waveguide crossing,” IEEE Photonics Technol. Lett. 25(5), 422–425 (2013). [CrossRef]
  17. Y. Xie, J. Xu, J. Zhang, “Elimination of cross-talk in silicon-on-insulator waveguide crossings with optimized angle,” Opt. Eng. 50(6), 0646011–0646014 (2011).
  18. P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, J. M. Perdigues, “Low-crosstalk in silicon-on insulator waveguide crossings with optimized-angle,” IEEE Photonics Technol. Lett. 19(20), 1583–1585 (2007). [CrossRef]
  19. H. Liu, H. Tam, P. K. A. Wai, E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun. 241(1–3), 99–104 (2004). [CrossRef]
  20. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference deivices based on self-imaging: Principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  21. S.-H. Kim, Y. Shoji, G. W. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Polarization diversity 2×2 switch with silicon-wire waveguide,” in European Conference on Optical Communication 2013 (2013), paper We.4.B.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited