OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2578–2583

High-power Faraday isolators based on TAG ceramics

Dmitry Zheleznov, Aleksey Starobor, Oleg Palashov, Chong Chen, and Shengming Zhou  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2578-2583 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Faraday isolator based on a new magneto-optical medium – TAG (terbium aluminum garnet) ceramics was implemented and investigated experimentally. The magneto-optical element was temperature-stabilized using water cooling. The device provides a stable isolation ratio of 38 dB at 300 W laser power. Estimates show high performance of the device at a kilowatt laser power.

© 2014 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3820) Materials : Magneto-optical materials
(160.6840) Materials : Thermo-optical materials
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems

ToC Category:

Original Manuscript: December 5, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 27, 2014
Published: January 29, 2014

Dmitry Zheleznov, Aleksey Starobor, Oleg Palashov, Chong Chen, and Shengming Zhou, "High-power Faraday isolators based on TAG ceramics," Opt. Express 22, 2578-2583 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999). [CrossRef]
  2. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000). [CrossRef]
  3. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007). [CrossRef] [PubMed]
  4. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).
  5. E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003). [CrossRef]
  6. R. Yasuhara, H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013). [CrossRef] [PubMed]
  7. S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999). [CrossRef]
  8. M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005). [CrossRef]
  9. H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004). [CrossRef]
  10. V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000). [CrossRef]
  11. W. Zhang, F. Guo, J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306(1), 195–199 (2007). [CrossRef]
  12. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002). [CrossRef]
  13. V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000). [CrossRef]
  14. M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004). [CrossRef]
  15. H. Lin, S. M. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011). [CrossRef]
  16. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013). [CrossRef]
  17. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, T. Yanagitani, “TGG ceramics Faraday rotator for high power laser application,” Opt. Lett. 39(5), 1–4(2014).
  18. M. A. Kagan, E. A. Khazanov, “Thermally Induced Birefringence in Faraday Devices Made from Terbium Gallium Garnet-Polycrystalline Ceramics,” Appl. Opt. 43(32), 6030–6039 (2004). [CrossRef] [PubMed]
  19. A. G. Vyatkin, E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307–3316 (2012). [CrossRef]
  20. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for a high average laser-radiation power,” Quantum Electron. 30(2), 147–151 (2000). [CrossRef]
  21. E. A. Khazanov, “Faraday Isolators for high average power lasers Advances” in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, Croatia, 2010).
  22. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011). [CrossRef]
  23. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited