OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2584–2594

Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel

Lin Yang, Gabriel Somesfalean, and Sailing He  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2584-2594 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1293 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material’s gas exchange dynamics are also experimentally studied.

© 2014 Optical Society of America

OCIS Codes
(160.1890) Materials : Detector materials
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:

Original Manuscript: December 11, 2013
Revised Manuscript: January 18, 2014
Manuscript Accepted: January 22, 2014
Published: January 29, 2014

Lin Yang, Gabriel Somesfalean, and Sailing He, "Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel," Opt. Express 22, 2584-2594 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999). [CrossRef]
  2. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  3. D. S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]
  4. M. Störzer, P. Gross, C. M. Aegerter, G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006). [CrossRef] [PubMed]
  5. T. Svensson, K. Vynck, M. Grisi, R. Savo, M. Burresi, D. S. Wiersma, “Holey random walks: optics of heterogeneous turbid composites,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022120 (2013). [CrossRef] [PubMed]
  6. I. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010). [CrossRef]
  7. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008). [CrossRef] [PubMed]
  8. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011). [CrossRef] [PubMed]
  9. S. Svanberg, “Gas in Scattering Media Absorption Spectroscopy,” Proc. SPIE Vol.7142, pp. 714202 (2008). [CrossRef]
  10. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008). [CrossRef]
  11. T. Svensson, E. Alerstam, J. Johansson, S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett. 35(11), 1740–1742 (2010). [CrossRef] [PubMed]
  12. T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B 110(2), 147–154 (2013). [CrossRef]
  13. S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photon. Rev. 7(5), 779–796 (2013). [CrossRef]
  14. J. M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev. A 87(3), 032510 (2013). [CrossRef]
  15. T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, J. H. Stacher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17(2), 395–401 (2005). [CrossRef]
  16. A. E. Aliev, J. Oh, M. E. Kozlov, A. A. Kuznetsov, S. Fang, A. F. Fonseca, R. Ovalle, M. D. Lima, M. H. Haque, Y. N. Gartstein, M. Zhang, A. A. Zakhidov, R. H. Baughman, “Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles,” Science 323(5921), 1575–1578 (2009). [CrossRef] [PubMed]
  17. J. L. Mohanan, I. U. Arachchige, S. L. Brock, “Porous semiconductor chalcogenide aerogels,” Science 307(5708), 397–400 (2005). [PubMed]
  18. R. T. Olsson, M. A. Azizi Samir, G. Salazar-Alvarez, L. Belova, V. Ström, L. A. Berglund, O. Ikkala, J. Nogués, U. W. Gedde, “Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates,” Nat. Nanotechnol. 5(8), 584–588 (2010). [CrossRef] [PubMed]
  19. M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express 17(13), 10849–10863 (2009). [CrossRef] [PubMed]
  20. A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, R. L. Simpson, “Use of Epoxides in the Sol- Gel Synthesis of Porous Iron (III) Oxide Monoliths from Fe (III) Salts,” Chem. Mater. 13(3), 999–1007 (2001). [CrossRef]
  21. A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, R. L. Simpson, “New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors,” J. Non-Cryst. Solids 285(1–3), 22–28 (2001). [CrossRef]
  22. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 54(2), 197–236 (1998). [CrossRef]
  23. S. Schilt, L. Thévenaz, P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003). [CrossRef] [PubMed]
  24. T. Fernholz, H. Teichert, V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75(2–3), 229–236 (2002). [CrossRef]
  25. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera, “The HITRAN molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  26. S. D. Mo, W. Y. Ching, “Electronic and optical properties of θ-Al2 O3 and comparison to α-Al2 O3,” Phys. Rev. B 57(24), 15219–15228 (1998). [CrossRef]
  27. R. C. Weast, Handbook of Chemistry and Physics 82nd, (Chemical Rubber, 2001), Chapter 10.
  28. G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, “Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy,” Appl. Opt. 41(18), 3538–3544 (2002). [CrossRef] [PubMed]
  29. E. Alerstam, T. Svensson, “Observation of anisotropic diffusion of light in compacted granular porous materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 040301 (2012). [CrossRef] [PubMed]
  30. C. T. Xu, M. Lewander, S. Andersson-Engels, E. Adolfsson, T. Svensson, S. Svanberg, “Wall-collision line broadening of molecular oxygen within nanoporous materials,” Phys. Rev. A 84(4), 042705 (2011). [CrossRef]
  31. T. Svensson, R. Savo, E. Alerstam, K. Vynck, M. Burresi, D. S. Wiersma, “Exploiting breakdown of the similarity relation for diffuse light transport: simultaneous retrieval of scattering anisotropy and diffusion constant,” Opt. Lett. 38(4), 437–439 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited