OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2609–2619

Reconfigurable linear combination of phase-and-amplitude coded optical signals

Yvan Paquot, Jochen Schröder, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2609-2619 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1688 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce an all-optical arithmetic unit operating a weighted addition and subtraction between multiple phase-and-amplitude coded signals. The scheme corresponds to calculating the field dot-product of frequency channels with a static vector of coefficients. The system is reconfigurable and format transparent. It is based on Fourier-domain processing and multiple simultaneous four-wave mixing processes inside a single nonlinear element. We demonstrate the device with up to three channels at 40 Gb/s and evaluate its efficiency by measuring the bit-error-rate of a distortion compensation operation between two signals.

© 2014 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Optics in Computing

Original Manuscript: October 16, 2013
Revised Manuscript: December 14, 2013
Manuscript Accepted: January 22, 2014
Published: January 30, 2014

Yvan Paquot, Jochen Schröder, and Benjamin J. Eggleton, "Reconfigurable linear combination of phase-and-amplitude coded optical signals," Opt. Express 22, 2609-2619 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Winzer, R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711–4728 (2006). [CrossRef]
  2. K. Azadet, E. Haratsch, H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid State Circuits 37, 317–327 (2002). [CrossRef]
  3. L. B. Du, A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18, 17075–17088 (2010). [CrossRef] [PubMed]
  4. P. Bower, I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17, 464–471 (2011). [CrossRef]
  5. R. A. Athale, “Optical matrix algebraic processors: a survey,” in 10th International Optical Computing Conference,S. Horvitz, ed. (International Society for Optics and Photonics, 1983), pp. 24–31. [CrossRef]
  6. X. Wang, J. Peng, M. Li, Z. Shen, O. Shan, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010). [CrossRef] [PubMed]
  7. D. E. Tamir, N. T. Shaked, P. J. Wilson, S. Dolev, “High-speed and low-power electro-optical DSP coprocessor,” J. Opt. Soc. Am. A 26, 11–20 (2009). [CrossRef]
  8. P. Yeh, A. E. T. Chiou, “Optical matrix-vector multiplication through four-wave mixing in photorefractive media,” Opt. Lett. 12, 138–140 (1987). [CrossRef] [PubMed]
  9. H. Ishikawa, Ultrafast All-Optical Signal Processing Devices (John Wiley, 2008). [CrossRef]
  10. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18, 917–919 (2006). [CrossRef]
  11. S. Singh, L. Lovkesh, “Ultrahigh speed optical signal processing logic based on an SOA-MZI,” IEEE J. Sel. Top. Quantum Electron. 18, 970–977 (2012). [CrossRef]
  12. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011). [CrossRef]
  13. M. Freiberger, D. Templeton, E. Mercado, “Low latency optical services,” in National Fiber Optic Engineers Conference(2012), paper NTu2E.1. [CrossRef]
  14. D. Schneider, “Trading at the speed of light,” IEEE Spectrum 48, 11–12 (2011). [CrossRef]
  15. L. Yan, A. Willner, X. Wu, A. Yi, “All-optical signal processing for ultrahigh speed optical systems and networks,” J. Lightwave Technol. 30, 3760–3770 (2012). [CrossRef]
  16. J. Kurumida, S. J. B. Yoo, “Nonlinear optical signal processing in optical packet switching systems,” IEEE J. Sel. Top. Quantum Electron. 18, 978–987 (2012). [CrossRef]
  17. H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010). [CrossRef]
  18. A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011). [CrossRef]
  19. Y. Paquot, J. Schröder, M. D. Pelusi, B. J. Eggleton, “All-optical hash code generation and verification for low latency communications,” Opt. Express 21, 23873–23884 (2013). [CrossRef] [PubMed]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  21. J. Wang, Q. Sun, J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17, 12555–12563 (2009). [CrossRef] [PubMed]
  22. J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express 21, 690–697 (2013). [CrossRef] [PubMed]
  23. A. Hill, D. Payne, “Linear crosstalk in wavelength-division-multiplexed optical-fiber transmission systems,” J. Lightwave Technol. 3, 643–651 (1985). [CrossRef]
  24. J. Zhou, M. O’Mahony, S. Walker, “Analysis of optical crosstalk effects in multi-wavelength switched networks,” IEEE Photonics Technol. Lett. 6, 302–305 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited