OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2632–2655

Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2632-2655 (2014)
http://dx.doi.org/10.1364/OE.22.002632


View Full Text Article

Enhanced HTML    Acrobat PDF (2476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate, for the first time, OCT imaging capabilities of a novel, akinetic (without any form of movement in the tuning mechanism), all-semiconductor, all-electronic tunable, compact and flexible swept source laser technology at 1550 nm and 1310 nm. To investigate its OCT performance, 2D and 3D ex vivo and in vivo OCT imaging was performed at different sweep rates, from 20 kHz up to 200 kHz, with different axial resolutions, about 10 µm to 20 µm, and at different coherence gate displacements, from zero delay to >17 cm. Laser source phase linearity and phase repeatability standard deviation of <2 mrad (<160 pm) were observed without external phase referencing, indicating that the laser operated close to the shot noise limit (~2 × factor); constant percentile wavelengths variations of sliding RIN and ortho RIN <0.2% could be demonstrated, ~5 times better as compared to other swept laser technologies.

© 2014 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Imaging Systems

History
Original Manuscript: October 24, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: December 27, 2013
Published: January 30, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, "Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length," Opt. Express 22, 2632-2655 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Optical coherence tomography: technology and applications – Vol. 1, W. Drexler and J. G. Fujimoto eds. (Springer 2008).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  3. R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  4. High speed 1310nm swept source for OCT,” datasheet #2010–0230, Axsun Technologies Inc. (2009); http://www.axsun.com/PDF/OCT-SS1310-datasheet-update-7-12-13.pdf .
  5. High speed scanning lasers,” datasheet, Santec Corp. (2013); http://www.santec.com/en/products/oct/lightsource-for-octsystem?gclid=CMCZkrLwlboCFQZZ3godk3UAUA .
  6. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” CLEO 1–2 (2011).
  7. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012). [CrossRef]
  8. M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011). [CrossRef]
  9. J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012). [CrossRef]
  10. B. R. Bennett, R. A. Soref, J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990). [CrossRef]
  11. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” PDPB2, CLEO 2011.
  12. “Inner vision: optical coherence tomography,” 2010 Vol. 1.1, p.8, Santec Corp.
  13. “Wide bandwidth 100kHz 1310nm swept source OCT,” datasheet #2013–0103, Axsun Technologies Inc. (2013).
  14. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  15. R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010). [CrossRef]
  16. A. Yariv, “Optical electronics in modern communication,” (Oxford University, 1997).
  17. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009). [CrossRef] [PubMed]
  18. M. A. Choma, K. Hsu, J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005). [CrossRef] [PubMed]
  19. J. Xi, L. Huo, J. Li, X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18, 9511 (2010).
  20. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652 (2005).
  21. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited