OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2665–2674

Engineering metal oxide nanostructures for the fiber optic sensor platform

Zsolt L. Poole, Paul Ohodnicki, Rongzhang Chen, Yuankun Lin, and Kevin P. Chen  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2665-2674 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fiber integration. High-temperature stable fiber Bragg gratings inscribed in D-shaped fibers were used to perform real-time characterization of optical absorption and refractive index modulation of metal oxides in response to NH3 from the room temperature to 500°C. Measurement results reveals that the redox reaction of the nanostructured metal oxides exposed to a reactive gas NH3 induces much stronger changes in optical absorption as opposed to changes in the refractive index. Results presented in this paper provide important guidance for fiber optic chemical sensing designs based on metal oxide nanomaterials.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: October 29, 2013
Revised Manuscript: December 25, 2013
Manuscript Accepted: January 14, 2014
Published: January 30, 2014

Zsolt L. Poole, Paul Ohodnicki, Rongzhang Chen, Yuankun Lin, and Kevin P. Chen, "Engineering metal oxide nanostructures for the fiber optic sensor platform," Opt. Express 22, 2665-2674 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Akbar, P. Dutta, C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tec. 3(4), 302–311 (2006). [CrossRef]
  2. G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sens. Actuators B Chem. 107, 209–232 (2005).
  3. G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?” Mat. Sci. Eng. B Solid. 139(1), 1–23 (2007). [CrossRef]
  4. N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B Chem. 108, 2–14 (2005).
  5. N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B Chem. 5, 7–19 (1991).
  6. A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012). [CrossRef] [PubMed]
  7. E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009). [CrossRef]
  8. R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012). [CrossRef]
  9. H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011). [CrossRef]
  10. P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011). [CrossRef]
  11. M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006). [CrossRef] [PubMed]
  12. I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006). [CrossRef] [PubMed]
  13. B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012). [CrossRef] [PubMed]
  14. A. Rothschild, Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” J. Appl. Phys. 95(11), 6374–6380 (2004). [CrossRef]
  15. S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010). [CrossRef]
  16. X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009). [CrossRef] [PubMed]
  17. M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010). [CrossRef]
  18. J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011). [CrossRef] [PubMed]
  19. Z.-M. Qi, Z. Hao-shen, and I. Honma, “Mesostructured and mesoporous metal oxide films for optical waveguide-based gas sensor application,” Sensors 2004, Proceedings of IEEE (2004), vol. 1313, pp. 1316–1319.
  20. A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).
  21. Q. Yan, S. Tao, H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77(3), 953–961 (2009). [CrossRef] [PubMed]
  22. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).
  23. X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011). [CrossRef]
  24. J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006). [CrossRef]
  25. X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).
  26. J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008). [CrossRef] [PubMed]
  27. Z. Gu, Y. Xu, K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett. 31(16), 2405–2407 (2006). [CrossRef] [PubMed]
  28. T. Chuen-Lin, C. Tzu-Chung, C. Chun-Chia, C. Yu-Zong, and L. Wen-Fung, “Tuning sensitivity of liquid refractive index sensor based on side-polishing fiber Bragg gratings,” in Optical Fiber Communication and Optoelectronic Exposition and Conference, 2008. AOE 2008. Asia (2008), pp. 1–3.
  29. X. Chen, K. Zhou, L. Zhang, I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005). [CrossRef] [PubMed]
  30. Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011). [CrossRef]
  31. A. Hartung, S. Brueckner, H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18(4), 3754–3761 (2010). [CrossRef] [PubMed]
  32. G. Stewart, F. A. Muhammad, B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sens. Actuators B Chem. 11, 521–524 (1993).
  33. H. Peelaers, E. Kioupakis, C. G. Van de Walle, “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO[sub 2],” Appl. Phys. Lett. 100(1), 011914 (2012). [CrossRef]
  34. D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000). [CrossRef]
  35. K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000). [CrossRef] [PubMed]
  36. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999). [CrossRef]
  37. S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010). [CrossRef] [PubMed]
  38. V. N. Urade, H. W. Hillhouse, “Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure,” J. Phys. Chem. B 109(21), 10538–10541 (2005). [CrossRef] [PubMed]
  39. R. Landauer, “Electrical conductivity in inhomogeneous media,” AIP Conf. Proc. 40, 2–45 (1978). [CrossRef]
  40. L. Rosenfeld, Theory of Electrons, Vol. 1 in Selected Topics in Modern Physics (North-Holland, 1951), pp. xv, 119 p.
  41. J. Isidorsson, C. G. Granqvist, K. von Rottkay, M. Rubin, “Ellipsometry on sputter-deposited tin oxide films: optical constants versus stoichiometry, hydrogen content, and amount of electrochemically intercalated lithium,” Appl. Opt. 37(31), 7334–7341 (1998). [CrossRef] [PubMed]
  42. M. L. Åslund, J. Canning, M. Stevenson, K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600 ° C,” Opt. Lett. 35(4), 586–588 (2010). [CrossRef] [PubMed]
  43. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011). [CrossRef] [PubMed]
  44. W. Johnstone, G. Thursby, D. Moodie, K. McCallion, “Fiber-optic refractometer that utilizes multimode waveguide overlay devices,” Opt. Lett. 17(21), 1538–1540 (1992). [CrossRef] [PubMed]
  45. W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  46. A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited