OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2725–2734

Modeling and optimization of photonic crystal devices based on transformation optics method

Yinghui Cao, Jun Xie, Yongmin Liu, and Zhenyu Liu  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2725-2734 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a method for designing Photonic Crystal (PhC) devices that consist of dielectric rods with varying size. In the proposed design method, PhC devices are modeled with the Transformation Optics (TO) approach, and then they are optimized using the gradient method. By applying the TO technique, the original device model is transformed into an equivalent model that consists of uniform and fixed-sized rods, with parameterized permittivity and permeability distributions. Therefore, mesh refinement around small rods can be avoided, and PhC devices can be simulated more efficiently. In addition, gradient of the optimization object function is calculated with the Adjoint-Variable Method (AVM), which is very efficient for optimizing devices subject to multiple design variables. The proposed method opens up a new avenue to design and optimize a variety of photonic devices for optical computing and information processing.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: November 27, 2013
Revised Manuscript: January 6, 2014
Manuscript Accepted: January 9, 2014
Published: January 30, 2014

Yinghui Cao, Jun Xie, Yongmin Liu, and Zhenyu Liu, "Modeling and optimization of photonic crystal devices based on transformation optics method," Opt. Express 22, 2725-2734 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2 (Princeton University, 2008).
  2. I. A. Sukhoivanov, I. V. Guryev, Photonic Crystals: Physics and Practical Modeling (Springer-Verlag, Berlin, 2009). [CrossRef]
  3. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001). [CrossRef]
  4. P. Bienstman, S. Assefa, S. G. Johnson, J. D. Joannopoulos, G. S. Petrich, L. A. Kolodziejski, “Taper structures for coupling into photonic crystal slab waveguides,” J. Opt. Soc. Am. B 20, 1817–1821 (2003). [CrossRef]
  5. K. Dossou, L. C. Botten, C. M. Sterke, R. C. McPhedran, A. A. Asatryan, S. Chen, J. Brnovic, “Efficient couplers for photonic crystal waveguides,” Opt. Commun. 265, 207–219 (2006). [CrossRef]
  6. A. Mekis, J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightw. Technol., 19(6), 861–865 (2001). [CrossRef]
  7. O. Ozgun, M. Kuzuoglu, “Software metamaterials: Transformation media based multiscale techniques for computational electromagnetics”, J. Comput. Phys. 236, 203–219 (2013). [CrossRef]
  8. A. J. Ward, J. B. Pendry, “Refraction and geometry in Maxwell’s equation,” J. Mod. Opt. 43(4), 773–793 (1996). [CrossRef]
  9. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  10. Y. M. Liu, X. Zhang, “Recent advances in transformation optics,” Nanoscale 4(17), 5277–5292 (2012). [CrossRef] [PubMed]
  11. L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3:1217(2012). [PubMed]
  12. Q. Wu, J. P. Turpin, D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light: Science & Applications 1, e38; (2012). [CrossRef]
  13. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, J. Marti, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett. 34(18), 2760–2762 (2009). [CrossRef] [PubMed]
  14. Y. Zhang, S. Yang, A. E. J. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013). [CrossRef] [PubMed]
  15. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design.” Opt. Express 21(18), 21693–21701 (2013). [CrossRef] [PubMed]
  16. N. K. Georgieva, S. Glavic, M. H. Bakr, J. W. Bandler, “Feasible Adjoint Sensitivity Technique for EM Design Optimization,” IEEE Tans. Microwave Theory Tech. 50(12), 2751–2758 (2002). [CrossRef]
  17. G. Veronis, R. W. Dutton, S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29(19), 2288–2290 (2004). [CrossRef] [PubMed]
  18. J. S. Jensen, O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005). [CrossRef]
  19. COMSOL Multiphysics, http://www.comsol.com/
  20. D. Marcuse, Theory of Dielectric Optical Waveguides(Academic Press, 1974).
  21. S. G. Johnson, J. D. Joanopoulos, “Block-iterative frequency-domain methods for Maxwell’s equation in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  22. M. Schmidt, http://www.di.ens.fr/~Emschmidt/Software/minConf.html
  23. M. Minkov, V. Savona, “Effect of hole-shape irregularities on photonic crystal waveguides,” Opt. Lett. 37(15), 3108–3110 (2012). [CrossRef] [PubMed]
  24. V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited