OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2735–2744

Impact of structural distortions on the performance of hollow-core photonic bandgap fibers

Eric Numkam Fokoua, David J. Richardson, and Francesco Poletti  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2735-2744 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a generic model for studying numerically the performance of hollow-core photonic bandgap fibers (HC-PBGFs) with arbitrary cross-sectional distortions. Fully vectorial finite element simulations reveal that distortions beyond the second ring of air holes have an impact on the leakage loss and bandwidth of the fiber, but do not significantly alter its surface scattering loss which remains the dominant contribution to the overall fiber loss (providing that a sufficient number of rings of air holes (≥5) are used). We have found that while most types of distortions in the first two rings are generally detrimental, enlarging the core defect while keeping equidistant and on a circular boundary the glass nodes surrounding the core may produce losses half those compared to “idealized” fiber designs and with no penalty in terms of the transmission bandwidth.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics

Original Manuscript: November 27, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 14, 2014
Published: January 30, 2014

Eric Numkam Fokoua, David J. Richardson, and Francesco Poletti, "Impact of structural distortions on the performance of hollow-core photonic bandgap fibers," Opt. Express 22, 2735-2744 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013). [CrossRef]
  2. Y. Jung, V. A. J. M. Sleiffer, N. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. de Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Proceedings of the Optical Fiber Communications Conference (2013), paper PDP5A.3 (Postdeadline).
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005). [CrossRef] [PubMed]
  4. E. N. Fokoua, F. Poletti, D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012). [CrossRef] [PubMed]
  5. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proceedings of Optical Fiber Communication Conference (2004), paper PDP24.
  6. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14(17), 7974–7985 (2006). [CrossRef] [PubMed]
  7. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15(26), 17577–17586 (2007). [CrossRef] [PubMed]
  8. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008). [CrossRef] [PubMed]
  9. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, P. St. J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013). [CrossRef] [PubMed]
  10. K. Saitoh, M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003). [CrossRef] [PubMed]
  11. M.-J. Li, J. A. West, K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25(9), 2463–2468 (2007). [CrossRef]
  12. F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, ” Advances and limitations in the modeling of fabricated photonic bandgap fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2.
  13. K. Z. Aghaie, M. J. F. Digonnet, S. Fan, “Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model,” J. Lightwave Technol. 31(7), 1015–1022 (2013). [CrossRef]
  14. F. Poletti, “Hollow core fiber with an octave spanning bandgap,” Opt. Lett. 35(17), 2837–2839 (2010). [CrossRef] [PubMed]
  15. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012). [CrossRef]
  16. T. Murao, K. Saitoh, M. Koshiba, “Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss waveguides,” J. Lightwave Technol. 26(12), 1602–1612 (2008). [CrossRef]
  17. F. Poletti and E. Numkam Fokoua, “Understanding the physical origin of surface modes and practical rules for their suppression,” in Proceedings of ECOC 2013, London (2013), paper Tu.3A. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited