OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2790–2797

Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating

Jian Hung Lin, Chun-Yen Tseng, Ching-Ting Lee, Jeff F. Young, Hung-Chih Kan, and Chia Chen Hsu  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2790-2797 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1855 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm2. Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.0090) Holography : Holography
(190.2620) Nonlinear optics : Harmonic generation and mixing
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: December 4, 2013
Revised Manuscript: January 9, 2014
Manuscript Accepted: January 9, 2014
Published: January 30, 2014

Jian Hung Lin, Chun-Yen Tseng, Ching-Ting Lee, Jeff F. Young, Hung-Chih Kan, and Chia Chen Hsu, "Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating," Opt. Express 22, 2790-2797 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  2. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).
  3. D. Gindre, A. Boeglin, A. Fort, L. Mager, K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14(21), 9896–9901 (2006). [CrossRef] [PubMed]
  4. N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000). [CrossRef]
  5. S. Bidault, J. Gouya, S. Brasselet, J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 13(2), 505–510 (2005). [CrossRef] [PubMed]
  6. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004). [CrossRef] [PubMed]
  7. T.-M. Liu, Y.-W. Lee, C.-F. Chang, S.-C. Yeh, C.-H. Wang, S.-W. Chu, C.-K. Sun, “Imaging polyhedral inclusion bodies of nuclear polyhedrosis viruses with second harmonic generation microscopy,” Opt. Express 16(8), 5602–5608 (2008). [CrossRef] [PubMed]
  8. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).
  9. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998). [CrossRef]
  10. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000). [CrossRef] [PubMed]
  11. J. H. Lin, N. D. Lai, C. H. Chiu, C.-Y. Lin, G. W. Rieger, J. F. Young, F. S.-S. Chien, C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16(11), 7832–7841 (2008). [CrossRef] [PubMed]
  12. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  14. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007). [CrossRef] [PubMed]
  15. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005). [CrossRef]
  16. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007). [CrossRef]
  17. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28(24), 2500–2502 (2003). [CrossRef] [PubMed]
  18. A. R. Cowan, J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65(8), 085106 (2002). [CrossRef]
  19. A. R. Cowan, J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20(9), R41–R56 (2005). [CrossRef]
  20. H. J. Simon, C. Huang, J. C. Quail, Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988). [CrossRef]
  21. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  22. G. Blau, E. Popov, F. Kajzar, A. Raimond, J. F. Roux, J. L. Coutaz, “Grating-assisted phase-matched second-harmonic generation from a polymer waveguide,” Opt. Lett. 20(10), 1101–1103 (1995). [CrossRef] [PubMed]
  23. G. Purvinis, P. S. Priambodo, M. Pomerantz, M. Zhou, T. A. Maldonado, R. Magnusson, “Second-harmonic generation in resonant waveguide gratings incorporating ionic self-assembled monolayer polymer films,” Opt. Lett. 29(10), 1108–1110 (2004). [CrossRef] [PubMed]
  24. F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006). [CrossRef] [PubMed]
  25. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  26. N. Ganesh, B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006). [CrossRef]
  27. W. Zhang, B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008). [CrossRef]
  28. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007). [CrossRef]
  29. A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010). [CrossRef] [PubMed]
  30. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007). [CrossRef] [PubMed]
  31. J. H. Lin, C.-Y. Tseng, C.-T. Lee, H.-C. Kan, C. C. Hsu, “Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating,” Opt. Express 21(20), 24318–24325 (2013). [CrossRef] [PubMed]
  32. M. Amano, T. Kaino, “Second-order nonlinearity of a novel diazo-dye-attached polymer,” J. Appl. Phys. 68(12), 6024–6028 (1990). [CrossRef]
  33. M. Amano, T. Kaino, S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990). [CrossRef]
  34. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005). [CrossRef] [PubMed]
  35. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005). [CrossRef] [PubMed]
  36. Http://refractiveindex.info/?group = GLASSES&material = FK51A.
  37. J. Turunen, In Micro-optics: Elements, Systems, and Applications, edited by H. P. Herzig (Taylor & Francis, 1997), Chap. 2.
  38. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited