OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2853–2859

Tunable millimeter and sub-millimeter spectral response of textile metamaterial via resonant states

Michael Ghebrebrhan, Francisco J. Aranda, David P. Ziegler, Joel B. Carlson, Jeffrey Perry, Deana M. Archambault, David A. DiGiovanni, Andrew J. Gatesman, Robert H. Giles, Weidong Zhang, Elliott R. Brown, and Brian R. Kimball  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2853-2859 (2014)
http://dx.doi.org/10.1364/OE.22.002853


View Full Text Article

Enhanced HTML    Acrobat PDF (2100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a new textile metamaterial created by adding metal wires directly into the polymer yarn. Split-ring resonator-like extended states are created. Simulations revealed that the extended states can be easily tuned via the geometry. Measurements of the transmittance spectrum as a function of the polarization angle in the low terahertz range were also performed and these peaks were ascribed to a polarization-dependent resonator model. The fabrics are viable candidates for flexible and deformable gigahertz and terahertz-enabled metamaterials.

© 2014 Optical Society of America

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: October 23, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: December 2, 2013
Published: January 31, 2014

Citation
Michael Ghebrebrhan, Francisco J. Aranda, David P. Ziegler, Joel B. Carlson, Jeffrey Perry, Deana M. Archambault, David A. DiGiovanni, Andrew J. Gatesman, Robert H. Giles, Weidong Zhang, Elliott R. Brown, and Brian R. Kimball, "Tunable millimeter and sub-millimeter spectral response of textile metamaterial via resonant states," Opt. Express 22, 2853-2859 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2853


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Munk, Frequency Selective Surfaces: Theory and Design, (John Wiley, 2000).
  2. D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47(11), 2059–2074 (1999). [CrossRef]
  3. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  6. W. J. Padilla, D. R. Smith, and D. N. Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Soc. Am. B23(3), 404–414 (2006). [CrossRef]
  7. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett.94(6), 063901 (2005). [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006). [CrossRef]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  10. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  11. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  12. P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, and E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech.41(10), 1664–1675 (1993). [CrossRef]
  13. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A362, 379–393 (2004).
  14. J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004). [CrossRef]
  15. E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, and C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE4719, 364–369 (2002). [CrossRef]
  16. M. N. Asfar, “Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers,” IEEE Trans. Instrum. Meas.36(2), 530–536 (1987).
  17. I. Dunayevskiy, B. Bortnik, K. Geary, R. Lombardo, M. Jack, and H. Fetterman, “Millimeter- and submillimeter-wave characterization of various fabrics,” Appl. Opt.46(24), 6161–6165 (2007). [CrossRef] [PubMed]
  18. G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, and M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem.403(5), 1405–1414 (2012). [CrossRef] [PubMed]
  19. S. Maity, K. Singha, P. Debnath, and M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng.2(2), 11–19 (2013).
  20. D. Soyaslan, S. Comlekci, and O. Goktepe, “Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935,” J. Text. Inst.101(10), 890–897 (2010). [CrossRef]
  21. R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, and S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst.100(6), 512–524 (2009). [CrossRef]
  22. A. Tennant, W. Hurley, and T. Dias, “Experimental knitted, textile frequency selective surfaces,” IEEE Electron. Lett.48(22), 1386–1388 (2012). [CrossRef]
  23. M. S. Mirotznik, S. Yarlagadda, R. McCauley, and P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech.60(1), 158–169 (2012). [CrossRef]
  24. M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, and R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur.17(1), 66–70 (2009).
  25. Specialty Product: ICON-75,” http://www.eytechnologies.com/icon-75.html .
  26. D. DiGiovanni and A. Gatesman, personal communication.
  27. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” J. Infrared Millimeter Terahertz Waves17(12), 1997–2034 (1996). [CrossRef]
  28. COMSOL,” http://www.comsol.com/ .
  29. J. W. S. Hearle, P. Grosberg, and S. Backer, Structural Mechanics of Fibers, Yarns, and Fabrics (John Wiley, 1969).
  30. M. Matsuo and T. Yamada, “Hysteresis of tensile load–strain route of knitted fabrics under extension and recovery processes estimated by strain history,” Text. Res. J.79(3), 275–284 (2009). [CrossRef]
  31. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys.33(1), 33–38 (1992). [CrossRef]
  32. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1983).
  33. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonances in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited