OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2868–2880

Plasmonic waveguides based on symmetric and asymmetric T-shaped structures

Barun Gupta, Shashank Pandey, and Ajay Nahata  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2868-2880 (2014)
http://dx.doi.org/10.1364/OE.22.002868


View Full Text Article

Enhanced HTML    Acrobat PDF (5309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the fabrication and characterization of plasmonic waveguides based on a periodic one-dimensional array of symmetric and asymmetric T-shaped structures. The devices are fabricated in a polymer resin using conventional 3D printing and subsequently overcoated with ~500 nm of Au. Using terahertz (THz) time-domain spectroscopy, we systematically measure the guided-wave transmission properties of the devices as a function of the different geometrical parameters. Through these measurements, we find that the resonance frequency associated with the lowest order mode depends primarily on the structure height and the cap width and appears to be independent of its lateral width. We also perform numerical simulations using the same geometrical parameters and find excellent agreement between experiment and simulation. We fabricate a waveguide in which the lateral width of the T-shaped structures is tapered in a linear fashion. While the spectrum of this device is similar to one without tapering, we observe relatively little reduction in the mode size, even as the structure width is reduced by a factor of eight.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Plasmonics

History
Original Manuscript: November 11, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 27, 2014
Published: January 31, 2014

Citation
Barun Gupta, Shashank Pandey, and Ajay Nahata, "Plasmonic waveguides based on symmetric and asymmetric T-shaped structures," Opt. Express 22, 2868-2880 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2868


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  3. R. Mendis, D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef] [PubMed]
  4. M. Wächter, M. Nagel, H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007). [CrossRef]
  5. R. W. McGowan, G. Gallot, D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999). [CrossRef] [PubMed]
  6. J. A. Harrington, R. George, P. Pedersen, E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004). [CrossRef] [PubMed]
  7. K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  8. S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000). [CrossRef]
  9. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  10. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008). [CrossRef] [PubMed]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).
  12. W. Zhu, A. Agrawal, A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  13. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  14. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  15. A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  16. G. Kumar, S. Pandey, A. Cui, A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011). [CrossRef]
  17. G. Kumar, A. Cui, S. Pandey, A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19(2), 1072–1080 (2011). [CrossRef] [PubMed]
  18. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009). [CrossRef] [PubMed]
  19. C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010). [CrossRef]
  20. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010). [CrossRef] [PubMed]
  21. Z. Gao, X. Zhang, L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010). [CrossRef]
  22. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011). [CrossRef] [PubMed]
  23. G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013). [CrossRef]
  24. X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013). [CrossRef]
  25. W. Zhao, O. M. Eldaiki, R. Yang, Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010). [CrossRef] [PubMed]
  26. S. Pandey, B. Gupta, A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21(21), 24422–24430 (2013). [CrossRef] [PubMed]
  27. X. Shou, A. Agrawal, A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13(24), 9834–9840 (2005). [CrossRef] [PubMed]
  28. A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996). [CrossRef]
  29. A. Nahata, W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007). [CrossRef] [PubMed]
  30. T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited