OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2925–2932

Autocorrelation properties of fully coherent beam with and without orbital angular momentum

Yuanjie Yang, Yuan Dong, Chengliang Zhao, Yi-dong Liu, and Yangjian Cai  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2925-2932 (2014)
http://dx.doi.org/10.1364/OE.22.002925


View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spatial correlation singularity of a partially coherent vortex beam was demonstrated recently [Phys. Rev. Lett. 92, 143905 (2004)], and it was shown that the cross-correlation singularity disappears when the spatial coherence is high. In this paper, we demonstrate that the spatial autocorrelation function of a fully coherent beam in the far-field is equivalent to the Fourier transform of its intensity in the source plane. Our theoretical and experimental results show that, depending on both the radial and azimuthal mode indices (p, λ) of the incident light beam, the distribution of the far-field autocorrelation function displays a series of concentric, alternate bright and dark rings. This phenomenon may be used to determine the topological charge (the azimuthal index) of light beam with a nonzero radial index.

© 2014 Optical Society of America

OCIS Codes
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: November 28, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 27, 2014
Published: January 31, 2014

Citation
Yuanjie Yang, Yuan Dong, Chengliang Zhao, Yi-dong Liu, and Yangjian Cai, "Autocorrelation properties of fully coherent beam with and without orbital angular momentum," Opt. Express 22, 2925-2932 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2925


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011). [CrossRef] [PubMed]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  3. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  4. I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19(15), 14277–14289 (2011). [CrossRef] [PubMed]
  5. J. Wang, J. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]
  6. A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003). [CrossRef] [PubMed]
  7. G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004). [CrossRef] [PubMed]
  8. G. Molina-Terriza, J. P. Torres, L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]
  9. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995). [CrossRef] [PubMed]
  10. K. Dholakia, T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]
  11. H. F. Schouten, G. Gbur, T. D. Visser, E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28(12), 968–970 (2003). [CrossRef] [PubMed]
  12. I. Maleev, D. Palacios, A. Marathay, G. Swartzlander., “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21(11), 1895–1900 (2004). [CrossRef]
  13. D. M. Palacios, I. D. Maleev, A. S. Marathay, G. A. Swartzlander., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92(14), 143905 (2004). [CrossRef] [PubMed]
  14. Y. Yang, M. Mazilu, K. Dholakia, “Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions,” Opt. Lett. 37(23), 4949–4951 (2012). [PubMed]
  15. Y. Yang, M. Chen, M. Mazilu, A. Mourka, Y. Liu, K. Dholakia, “Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity,” New J. Phys. 15(11), 113053 (2013). [CrossRef]
  16. M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100(23), 231115 (2012). [CrossRef]
  17. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, S. Chávez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105(5), 053904 (2010). [CrossRef] [PubMed]
  18. Q. S. Ferreira, A. J. Jesus-Silva, E. J. S. Fonseca, J. M. Hickmann, “Fraunhofer diffraction of light with orbital angular momentum by a slit,” Opt. Lett. 36(16), 3106–3108 (2011). [CrossRef] [PubMed]
  19. L. E. E. de Araujo, M. E. Anderson, “Measuring vortex charge with a triangular aperture,” Opt. Lett. 36(6), 787–789 (2011). [CrossRef] [PubMed]
  20. A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, E. M. Wright, “Visualization of the birth of an optical vortex using diffraction from a triangular aperture,” Opt. Express 19(7), 5760–5771 (2011). [CrossRef] [PubMed]
  21. C.-S. Guo, L. Lu, S.-J. Yue, G.-X. Wei, “Measuring the orbital angular momentum of optical vortices using a multipinhole plate,” Appl. Phys. Lett. 94(23), 231104 (2009). [CrossRef]
  22. S. Prabhakar, A. Kumar, J. Banerji, R. P. Singh, “Revealing the order of a vortex through its intensity record,” Opt. Lett. 36(22), 4398–4400 (2011). [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 1996).
  24. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products (Academic Press, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited