OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2989–2995

Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering

Xinglin Wen, Qing Zhang, Jianwei Chai, Lai Mun Wong, Shijie Wang, and Qihua Xiong  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2989-2995 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By utilizing the phase change properties of vanadium dioxide (VO2), we have demonstrated the tuning of the electric and magnetic modes of split ring resonators (SRRs) simultaneously within the near IR range. The electric resonance wavelength is blue-shift about 73 nm while the magnetic resonance mode is red-shifted about 126 nm during the phase transition from insulating to metallic phases. Due to the hysteresis phenomenon of VO2 phase transition, both the electric and magnetic modes shifts are hysteretic. In addition to the frequency shift, the magnetic mode has a trend to vanish due to the fact that the metallic phase VO2 has the tendency to short the gap of SRR. We have also demonstrated the application of this active metamaterials in tunable surface-enhanced Raman scattering (SERS), for a fixed excitation laser wavelength, the Raman intensity can be altered significantly by tuning the electric mode frequency of SRR, which is accomplished by controlling the phase of VO2 with an accurate temperature control.

© 2014 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6450) Spectroscopy : Spectroscopy, Raman
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:

Original Manuscript: January 24, 2014
Manuscript Accepted: January 25, 2014
Published: January 31, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Xinglin Wen, Qing Zhang, Jianwei Chai, Lai Mun Wong, Shijie Wang, and Qihua Xiong, "Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering," Opt. Express 22, 2989-2995 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Liu, X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  2. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]
  3. N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008). [CrossRef] [PubMed]
  4. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004). [CrossRef]
  5. T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010). [CrossRef] [PubMed]
  6. J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011). [CrossRef] [PubMed]
  7. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009). [CrossRef] [PubMed]
  8. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  9. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  10. Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20(2), 1903–1911 (2012). [CrossRef] [PubMed]
  11. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  12. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  13. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007). [CrossRef]
  14. F. L. Zhang, W. H. Zhang, Q. Zhao, J. B. Sun, K. P. Qiu, J. Zhou, D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express 19(2), 1563–1568 (2011). [CrossRef] [PubMed]
  15. V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010). [CrossRef] [PubMed]
  16. J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009). [CrossRef] [PubMed]
  17. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008). [CrossRef] [PubMed]
  18. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  19. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013). [CrossRef] [PubMed]
  20. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010). [CrossRef] [PubMed]
  21. Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013). [CrossRef] [PubMed]
  22. M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013). [CrossRef] [PubMed]
  23. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009). [CrossRef] [PubMed]
  24. V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001). [CrossRef]
  25. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). [CrossRef] [PubMed]
  26. J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011). [CrossRef]
  27. H. Verleur, A. Barker, C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968). [CrossRef]
  28. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007). [CrossRef] [PubMed]
  29. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008). [CrossRef]
  30. K. Appavoo, R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011). [CrossRef] [PubMed]
  31. G. I. Petrov, V. V. Yakovlev, J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002). [CrossRef]
  32. X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011). [CrossRef] [PubMed]
  33. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006). [CrossRef] [PubMed]
  34. M. Decker, S. Linden, M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009). [CrossRef] [PubMed]
  35. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005). [CrossRef] [PubMed]
  36. K. Aydin, I. M. Pryce, H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010). [CrossRef] [PubMed]
  37. X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013). [CrossRef] [PubMed]
  38. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  39. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  40. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  41. B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013). [CrossRef] [PubMed]
  42. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013). [CrossRef]
  43. R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Analyst (Lond.) 129(12), 1251–1256 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited