OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2996–3012

XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators

Lin Yang, Lei Zhang, Chunming Guo, and Jianfeng Ding  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2996-3012 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the implementation of the XOR and XNOR logical operations using an electro-optic circuit, which is fabricated by CMOS-compatible process in the silicon-on-insulator (SOI) platform. The circuit consists of two cascaded add-drop microring resonators (MRRs), which are modulated through electric-field-induced carrier depletion in reverse biased pn junctions embedded in the ring waveguides. The resonance wavelength mismatch between the two nominally identical MRRs caused by fabrication errors is compensated by thermal tuning. Simultaneous bitwise XOR and XNOR operations of the two electrical modulating signals at the speed of 12.5 Gb/s are demonstrated. And 20 Gb/s XOR operation at one output port of the circuit is achieved. We explain the phenomena that one half of the resonance regions of the device are much more sensitive to the round-trip phase shift in the ring waveguides than the other half resonance regions. Characteristic graphs with logarithmic phase coordinate are proposed to analyze the sensitivity of the demonstrated circuit, as well as several typical integrated optical structures. It is found that our circuit with arbitrary chosen parameters has similar sensitivity to MRRs under the critical coupling.

© 2014 Optical Society of America

OCIS Codes
(130.3750) Integrated optics : Optical logic devices
(250.5300) Optoelectronics : Photonic integrated circuits
(230.4555) Optical devices : Coupled resonators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Optics in Computing

Original Manuscript: December 13, 2013
Revised Manuscript: January 27, 2014
Manuscript Accepted: January 28, 2014
Published: January 31, 2014

Lin Yang, Lei Zhang, Chunming Guo, and Jianfeng Ding, "XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators," Opt. Express 22, 2996-3012 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001). [CrossRef]
  2. R. Clavero, J. M. Martínez, F. Ramos, J. Martí, “All-optical packet routing scheme for optical label-swapping networks,” Opt. Express 12(18), 4326–4332 (2004). [CrossRef] [PubMed]
  3. A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999). [CrossRef]
  4. J. K. Rakshit, J. N. Roy, T. Chattopadhyay, “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun. 303, 30–37 (2013). [CrossRef]
  5. M. P. Fok, P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34(9), 1315–1317 (2009). [CrossRef] [PubMed]
  6. S. H. Jeon, S. K. Gil, “Optical implementation of triple DES algorithm based on dual XOR logic operations,” J. Opt. Soc. Korea 17(5), 362–370 (2013). [CrossRef]
  7. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008). [CrossRef]
  8. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010). [CrossRef]
  9. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000). [CrossRef]
  10. N. Deng, K. Chan, C. K. Chan, L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006). [CrossRef]
  11. S. Kumar, A. E. Willner, “Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA,” Opt. Express 14(12), 5092–5097 (2006). [CrossRef] [PubMed]
  12. I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, J. Jaques, C. R. Giles, “All-optical XOR and XNOR operations at86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers,” Opt. Express 17(21), 19062–19066 (2009). [CrossRef] [PubMed]
  13. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006). [CrossRef]
  14. J. Wang, J. Sun, X. Zhang, D. Huang, M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33(13), 1419–1421 (2008). [CrossRef] [PubMed]
  15. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010). [CrossRef] [PubMed]
  16. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005). [CrossRef]
  17. J. Qiu, K. Sun, M. Rochette, L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 22(16), 1199–1201 (2010). [CrossRef]
  18. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express 19(21), 20364–20371 (2011). [CrossRef] [PubMed]
  19. C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, B. J. Eggleton, “Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide,” Opt. Express 19(21), 20681–20690 (2011). [CrossRef] [PubMed]
  20. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011). [CrossRef] [PubMed]
  21. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012). [CrossRef]
  22. J. Hardy, J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007). [CrossRef] [PubMed]
  23. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013). [CrossRef]
  24. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010). [CrossRef] [PubMed]
  25. L. Zhang, R. Q. Ji, Y. H. Tian, L. Yang, P. Zhou, Y. Y. Lu, W. W. Zhu, Y. L. Liu, L. X. Jia, Q. Fang, M. B. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011). [CrossRef] [PubMed]
  26. C. Y. Qiu, X. Ye, R. Soref, L. Yang, Q. F. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012). [CrossRef] [PubMed]
  27. Y. Tian, L. Zhang, L. Yang, “Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators,” Opt. Express 20(15), 16794–16800 (2012). [CrossRef]
  28. L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012). [CrossRef] [PubMed]
  29. R. Soref, “Reconfigurable integrated optoelectronics,” Adv. Optoelectron. 2011, 627802 (2011). [CrossRef]
  30. Q. F. Xu, R. A. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011). [CrossRef] [PubMed]
  31. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012). [CrossRef] [PubMed]
  32. Q. F. Xu, V. R. Almeida, R. R. Panepucci, M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  33. J. Heebner, R. Grover, and T. Ibrahim, Optical microresonators: theory, fabrication, and applications (Springer-Verlag, London, 2008), Chap. 3.
  34. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  35. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008). [CrossRef] [PubMed]
  36. H. X. Yi, D. S. Citrin, Z. P. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited