OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3013–3027

Overcoming Auger recombination in nanocrystal quantum dot laser using spontaneous emission enhancement

Shilpi Gupta and Edo Waks  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3013-3027 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method to overcome Auger recombination in nanocrystal quantum dot lasers using cavity-enhanced spontaneous emission. We derive a numerical model for a laser composed of nanocrystal quantum dots coupled to optical nanocavities with small mode-volume. Using this model, we demonstrate that spontaneous emission enhancement of the biexciton transition lowers the lasing threshold by reducing the effect of Auger recombination. We analyze a photonic crystal nanobeam cavity laser as a realistic device structure that implements the proposed approach.

© 2014 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.5580) Quantum optics : Quantum electrodynamics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 21, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 24, 2014
Published: February 3, 2014

Shilpi Gupta and Edo Waks, "Overcoming Auger recombination in nanocrystal quantum dot laser using spontaneous emission enhancement," Opt. Express 22, 3013-3027 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Hill, “Nanophotonics: lasers go beyond diffraction limit,” Nat. Nanotechnol. 4, 706–707 (2009). [CrossRef] [PubMed]
  2. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19, 17683–17690 (2011). [CrossRef] [PubMed]
  3. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005). [CrossRef]
  4. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003). [CrossRef]
  5. L. Qu, X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002). [CrossRef] [PubMed]
  6. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933 (1996). [CrossRef]
  7. V. I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (Marcel Dekker, 2003). [CrossRef]
  8. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002). [CrossRef]
  9. P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005). [CrossRef]
  10. B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006). [CrossRef]
  11. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000). [CrossRef] [PubMed]
  12. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000). [CrossRef] [PubMed]
  13. H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003). [CrossRef]
  14. H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003). [CrossRef]
  15. M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002). [CrossRef]
  16. S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004). [CrossRef]
  17. J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006). [CrossRef]
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  19. V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science 28, 214–220 (2003).
  20. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996). [CrossRef]
  21. M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003). [CrossRef]
  22. J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. of Appl. Phys. 90, 283–327 (2003).
  23. Y. Zhang, I. Bulu, W.-M. Tam, B. Levitt, J. Shah, T. Botto, M. Loncar, “High-Q/V air-mode photonic crystal cavities at microwave frequencies,” Opt. Express 19, 9371–9377 (2011). [CrossRef] [PubMed]
  24. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001). [CrossRef]
  25. B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000). [CrossRef]
  26. J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004). [CrossRef]
  27. S. Empedocles, D. Norris, M. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996). [CrossRef] [PubMed]
  28. S. A. Empedocles, M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999). [CrossRef]
  29. D. Norris, M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B, 53, 16338–16346 (1996). [CrossRef]
  30. D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2007).
  31. O. Benson, Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999). [CrossRef]
  32. G. Bjork, Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991). [CrossRef]
  33. P. W. Milonni, J. H. Eberly, Laser Physics (Wiley, 2010). [CrossRef]
  34. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998). [CrossRef] [PubMed]
  35. R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007). [CrossRef]
  36. I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005). [CrossRef]
  37. M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011). [CrossRef] [PubMed]
  38. M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010). [CrossRef]
  39. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007). [CrossRef]
  40. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997). [CrossRef]
  41. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  42. Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011). [CrossRef] [PubMed]
  43. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef] [PubMed]
  44. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011). [CrossRef] [PubMed]
  45. S. Gupta, E. Waks, “Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity,” Opt. Express 21, 29612–29619 (2013). [CrossRef]
  46. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, D. Peyrade, “Ultra-High Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15, 16090–16096 (2007). [CrossRef] [PubMed]
  47. A. R. Zain, N. P. Johnson, M. Sorel, R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008). [CrossRef] [PubMed]
  48. Y. Gong, J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010). [CrossRef]
  49. A. Rundquist, A. Majumdar, J. Vuckovic, “Off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 99, 251907 (2011). [CrossRef]
  50. K. Rivoire, S. Buckley, J. Vuckovic, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, 013114 (2011). [CrossRef]
  51. J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009). [CrossRef] [PubMed]
  52. Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010). [CrossRef]
  53. M. Barth, J. Kouba, J. Stingl, B. Löchel, O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231–17240 (2007). [CrossRef] [PubMed]
  54. J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010). [CrossRef]
  55. M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003). [CrossRef]
  56. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited