OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3039–3044

Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding

Anirban Bera, Ranjan Kumar Barik, Matlabjon Sattorov, Ohjoon Kwon, Sun-Hong Min, In-Keun Baek, Seontae Kim, Jin-Kyu So, and Gun-Sik Park  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3039-3044 (2014)
http://dx.doi.org/10.1364/OE.22.003039


View Full Text Article

Enhanced HTML    Acrobat PDF (1152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metallic metamaterials with positive dielectric responses are promising as an alternative to dielectrics for the generation of Cerenkov radiation [ So J.-K. , Appl. Phys. Lett. 97(15), 151107 (2010)]. We propose here by theoretical analysis a mechanism to couple out Cerenkov radiation from the slab surfaces in the transverse direction. The proposed method based on Brillouin-zone folding is to periodically modify the thickness of the metamaterial slab in the axial direction. Moreover, the intensity of the surface-coupled radiation by this mechanism shows an order-of-magnitude enhancement compared to that of ordinary Smith-Purcell radiation.

© 2014 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Metamaterials

History
Original Manuscript: November 12, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: January 17, 2014
Published: February 3, 2014

Citation
Anirban Bera, Ranjan Kumar Barik, Matlabjon Sattorov, Ohjoon Kwon, Sun-Hong Min, In-Keun Baek, Seontae Kim, Jin-Kyu So, and Gun-Sik Park, "Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding," Opt. Express 22, 3039-3044 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  3. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  4. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  5. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  6. J. Shin, J. T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron.12(6), 1116–1122 (2006). [CrossRef]
  7. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005). [CrossRef] [PubMed]
  8. J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett.102(9), 093903 (2009). [CrossRef] [PubMed]
  9. J. K. So, J. H. Won, M. A. Sattorov, S. H. Bak, K. H. Jang, G.-S. Park, D. S. Kim, and F. J. Garcia-Vidal, “Cerenkov radiation in metallic metamaterials,” Appl. Phys. Lett.97(15), 151107 (2010). [CrossRef]
  10. J. K. So, K. H. Jang, G.-S. Park, and F. J. Garcia-Vidal, “Bulk and surface electromagnetic response of metallic metamaterials to convection electrons,” Appl. Phys. Lett.99(7), 071106 (2011). [CrossRef]
  11. G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett.98(20), 202901 (2011). [CrossRef]
  12. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett.103(9), 095003 (2009). [CrossRef] [PubMed]
  13. C. W. Neff, T. Yamashita, and C. J. Summers, “Observation of brillouin zone folding in photonic crystal slab waveguides possessing a superlattice pattern,” Appl. Phys. Lett.90(2), 021102 (2007). [CrossRef]
  14. C. W. Neff and C. J. Summers, “A photonic crystal superlattice based on triangular lattice,” Opt. Express13(8), 3166–3173 (2005). [CrossRef] [PubMed]
  15. C. S. T. Studio Suite, 2008, http://www.cst.com
  16. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev.92(4), 1069 (1953). [CrossRef]
  17. T. B. Boykin and G. Klimeck, “Practical application of zone-folding concepts in tight-binding calculations,” Phys. Rev. B71(11), 115215 (2005). [CrossRef]
  18. S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi162(1), 39–64 (1997). [CrossRef]
  19. C. Palmer, Diffraction Grating Handbook, 6th ed. (Newport Corporation, 2005), Chap. 12.
  20. O. A. Tret’yakov, “Theory of Smith-Purcell effect,” Sov. Radio Phys.2, 219–223 (1966).
  21. H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Gain of a Smith-Purcell free-electron laser,” Phys. Rev. ST Accel. Beams7(7), 070701 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited